Supersymmetry: to be or not to be?

SUSY 2016 University of Melbourne, 3 - 8 July 2016

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

- Why Supersymmetry?
- Why low energy (N = 1) Supersymmetry?
- What are the theoretical perspectives for SUSY if it does *not* show up at LHC?
- Quantum gravity: emergent space and time \Rightarrow fate of space-time supersymmetry?
- Is there symmetry 'beyond' (maximal) SUSY?
- Once again: N = 8 Supergravity?

Why Supersymmetry?

- Overcome Coleman Mandula No Go Theorem (1968) \Rightarrow merging space-time with internal symmetries.
- Needed for UV completion of Standard Model?
- Needed for UV finite theory of Quantum Gravity?
- Strings (membranes) need supersymmetry!
- Identify geometrical origin of fermions (superspace).

NB: *Local* supersymmetry \equiv supergravity because

$$\{Q^i_{\alpha}, \bar{Q}_{\dot{\beta}j}\} = 2\delta^i_j \sigma^{\mu}_{\alpha\dot{\beta}} P_{\mu}$$

 \Rightarrow if *all* fundamental symmetries are local (gauge) symmetries \Rightarrow local supersymmetry \Rightarrow local translations \equiv diffeomorphisms \Rightarrow general covariance and gravity!

Supersymmetric QFT

Neglecting central charges $Z_{ij}, Z^{ij} \equiv (Z_{ij})^*$, the most general supersymmetry algebra is [Haag,Lopuszanski,Sohnius (1975)]

$$[P_{\mu}, P_{\nu}] = 0 , \quad [M_{\mu\nu}, P_{\rho}] = \eta_{\nu\rho}P_{\mu} - \eta_{\mu\rho}P_{\nu} , \dots$$
$$[P_{\mu}, Q_{\alpha}^{i}] = [P_{\mu}, \bar{Q}_{\dot{\alpha}i}] = 0 , \quad [M^{\mu\nu}, Q_{\alpha}^{i}] = \sigma_{\alpha\beta}^{\mu\nu}Q^{\beta i} , \dots$$
$$\{Q_{\alpha}^{i}, Q_{\beta}^{j}\} = \{\bar{Q}_{\dot{\alpha}i}, \bar{Q}_{\dot{\beta}j}\} = 0 , \quad \{Q_{\alpha}^{i}, \bar{Q}_{\dot{\beta}j}\} = 2\delta_{j}^{i}\sigma_{\alpha\dot{\beta}}^{\mu}P_{\mu}$$

N-extended supersymmetry (for i, j = 1, ..., N) merges spacetime and internal symmetries when $N \ge 2$.

Other possibilities:

- Conformal supersymmetry $\{Q^i_{\alpha}\} \rightarrow \{Q^i_{\alpha}, S^i_{\alpha}\}$
- AdS supersymmetry $(\Lambda < 0)$: AdS_{d+1} \equiv SConf_d

NB: $\Lambda > 0$ and supersymmetry don't go together!

Representations (Supermultiplets)

Global (= rigid) supersymmetry: $s \le 1 \iff N \le 4$

N = 4 multiplet: $1 \times [1] \oplus 4 \times \left[\frac{1}{2}\right] \oplus 6 \times [0]$

Local supersymmetry (supergravity) $s \le 2 \quad \leftrightarrow N \le 8$ N = 8 multiplet: $1 \times [2] \oplus 8 \times [\frac{3}{2}] \oplus 28 \times [1] \oplus 56 \times [\frac{1}{2}] \oplus 70 \times [0]$ Maximal multiplets are **CPT self-conjugate** \rightarrow reduces outer automorphism group from U(N) to SU(N)In particular, scalar fields are complex self-dual:

$$\phi^{ij} \equiv (\phi_{ij})^* = \frac{1}{2} \epsilon^{ijkl} \phi_{kl} \quad \text{for } N = 4$$
$$\phi^{ijkl} \equiv (\phi_{ijkl})^* = \frac{1}{24} \epsilon^{ijklmnpq} \phi_{mnpq} \quad \text{for } N = 8$$

Why Low Energy (N = 1) Supersymmetry?

- *N* > 1 supersymmetry does not admit chiral fermions, at least not with fundamental gauge bosons.
- Hierarchy problem: Fundamental scalar fields ⇒ quadratic divergences. SUSY QFT has only logarithmic divergences ⇒ stabilize (but do not explain) hierarchy between electroweak and Planck scale?
- Strongly suggested by string compactification, e.g. may emerge from heterotic string upon compactification on some Calabi-Yau manifold.
- This appears to be the only option if we want to see supersymmetry at O(TeV) colliders! (Looking under the lamp post...)

How to break Supersymmetry?

- \rightarrow still no compelling mechanism!
 - Spontaneous breaking not sufficient (unlike for SM).
 - Break 'softly' by introducing *explicit* mass terms.

NB: time-dependent (e.g. cosmological) backgrounds always break supersymmetry!

In the larger perspective, need to embed symmetry breaking mechanism into superstring theory:

- Below M_{Planck} superstrings give way to N = 1 QFT.
- From there on discard 'stringy' excitations and proceed with a standard SUSY QFT and supergravity
- Problem of breaking SUSY is even more acute in superstring theory (tachyons, runaway dilaton, SUSY breaking *vs.* modular invariance, UV finiteness?)

What if N = 1 Supersymmetry is not there?

- Move up SUSY breaking scale to > 10 TeV range? But: with higher and higher exclusion limits the case for N=1 SUSY to solve hierarchy problem weakens considerably!
- Asymptotic safety: no SUSY needed?
- Conformal symmetry to solve hierarchy problem?
- Axions or light heavy neutrinos as DM particles?

In this talk, more radical proposal:

- Fate of space-time supersymmetry in quantum gravity scenarios with *emergent* space and time?
- Symmetry 'beyond' supersymmetry: E_{10} and $K(E_{10})$?
- Linking up maximal SUSY with 'real physics' may require novel symmetries, such as E_{10} and $K(E_{10})$.

Exceptionality and Maximal Supergravity

Main message: duality symmetries are more important than space-time symmetries (and SUSY!).

• Maximal theories: $E_{n(n)}$ for D = 11 - n [Cremmer, Julia(1979)]

N = 8 Supergravity

```
[Cremmer, Julia(1979); B. deWit, HN (1981)]
```

Unique theory (modulo 'gauging'), most symmetric known field theoretic extension of Einstein's theory!

$1 \times [2] \oplus 8 \times \left[\frac{3}{2}\right] \oplus 28 \times [1] \oplus 56 \times \left[\frac{1}{2}\right] \oplus 70 \times [0]$

- Diffeomorphisms and local Lorentz symmetry
- N = 8 local supersymmetry
- SU(8) R symmetry (local or rigid)
- Linearly or non-linearly realised duality symmetry $E_{7(7)}$

28 electric + 28 (dual) magnetic vectors in 56 of $E_{7(7)}$. 70 scalar fields described by 56-bein $\mathcal{V}(x) \in E_{7(7)}/SU(8)$ $\mathcal{V}(x) \to \mathcal{V}'(x) = g\mathcal{V}(x)h(x) , \quad g \in E_{7(7)}, h(x) \in SU(8)$

Exceptionality and Maximal Supergravity

Main message: duality symmetries are more important than space-time symmetries (and SUSY!).

• Maximal theories: $E_{n(n)}$ for D = 11 - n [Cremmer, Julia(1979)]

Below D = 3 symmetries become *infinite-dimensional*:

- $E_{9(9)} \equiv E_8^{(1)}$: a solution generating symmetry acting on moduli space $\mathcal{M} = E_{9(9)}/K(E_9)$.
- ... suggests $E_{10(10)}$ for D = 1: no space, only time?
- $\bullet \Rightarrow$ trade space-time for duality symmetries.

E_{10} : The Basic Picture

Conjecture: for $0 < T < T_P$ space-time 'de-emerges', and space-time based (quantum) field theory is replaced by quantised 'spinning' $E_{10}/K(E_{10}) \sigma$ -model.

[Damour, Henneaux, Kleinschmidt, HN: since 2002]

What is E_{10} ?

The nice thing about it is that no one knows [Murat Günaydin, unpublished]

 E_{10} is the 'group' associated with the Kac-Moody Lie algebra $g \equiv c_{10}$ defined via the Dynkin diagram [e.g. Kac]

Defined by generators $\{e_i, f_i, h_i\}$ and relations via Cartan matrix A_{ij} ('Chevalley-Serre presentation')

$$[h_i, h_j] = 0, \qquad [e_i, f_j] = \delta_{ij}h_i,$$

$$[h_i, e_j] = A_{ij}e_j, \qquad [h_i, f_j] = -A_{ij}f_j,$$

$$(ad e_i)^{1-A_{ij}}e_j = 0 \quad (ad f_i)^{1-A_{ij}}f_j = 0.$$

 \mathfrak{e}_{10} is the free Lie algebra generated by $\{e_i, f_i, h_i\}$ modulo these relations \rightarrow infinite dimensional as A_{ij} is *indefinite* \rightarrow Lie algebra of *exponential growth* !

Exceptionality and Maximal Supergravity

Main message: duality symmetries are more important than space-time symmetries (and SUSY!).

• Maximal theories: $E_{n(n)}$ for D = 11 - n [Cremmer, Julia(1979)]

Below D = 3 symmetries become *infinite-dimensional*:

- $E_{9(9)} \equiv E_8^{(1)}$: a solution generating symmetry acting on moduli space $\mathcal{M} = E_{9(9)}/K(E_9)$.
- ... suggests $E_{10(10)}$ for D = 1: no space, only time?
- \Rightarrow trade space-time for duality symmetries.
- E_{10} 'knows all' about maximal supersymmetry:
 - contains dualities of maximal supergravities
 - supermultiplets: M theory, mIIA and IIB
 - allows to reconstruct full dynamics

SL(10) level decomposition of E_{10}

• Decomposition w.r.t. SL(10) subgroup in terms of SL(10) tensors \rightarrow *level expansion*

$$\alpha = \ell \alpha_0 + \sum_{j=1}^{9} m^j \alpha_j \quad \Rightarrow \quad E_{10} = \bigoplus_{\ell \in \mathbb{Z}} E_{10}^{(\ell)}$$

• Up to $\ell \leq 3$ basic fields of D = 11 SUGRA together with their magnetic duals (spatial components)

$\ell =$	0	G_{mn}	Graviton
$\ell =$	1	A_{mnp}	3-form
$\ell =$	2	$A_{m_1\dots m_6}$	dual 6-form
$\ell =$	3	$h_{m_1m_8 n}$	dual graviton

- Analysis up to level $\ell \leq 28$ yields 4 400 752 653 representations (Young tableaux) of SL(10) [Fischbacher, HN: 0301017]
- Lie algebra structure (structure constants, etc.) understood only up to $\ell \leq 4$. Also: no matter where you stop it will get even more complicated beyond!

Fermions and $K(E_{10})$

Important point: maximal supersymmetric theories *not* based on (hypothetical) superextensions of E_n :

- There is no proper superextension of E_n for any n.
- For $D \ge 3$ supergravity fermions transform in maximal compact subgroup $K(E_n) \subset E_{n(n)}$, e.g.

 $K(E_7) \equiv SU(8)$ fermions $\in 8$ and 56 $K(E_8) \equiv Spin(16)/Z_2$ fermions $\in 16_v$ and 128_c

- The associated (double-valued) fermion representations are not 'liftable' to E_n representations
- Fermionic sector of M theory governed by $K(E_{10})$?
- $K(E_{10})$ unifies R symmetries, *e.g.* IIA and IIB fermions.

Back to N = 8: recent developments

Very recent work has shown that N = 8 supergravity

• is much more finite than expected (behaves like N = 4 super-Yang-Mills up to four loops)

[Bern, Carrasco, Dixon, Johansson, Roiban, PRL103(2009)081301]

- ... and could thus be finite to all orders!
- However: efforts towards five loops seem to be stuck.

In string theory as well there appear difficulties starting *at five loops*: super-moduli space is no longer 'split' [Grushevsky,Witten,...]

Even if N=8 Supergravity is finite there remain many open questions (*e.g.* concerning *non-perturbative* quantum gravity). But ... there is a strange coincidence:

 $56-8 = 3 \times 16 \Rightarrow$ if no new fundamental spin- $\frac{1}{2}$ degrees of freedom are found at LHC, the following proposal could become relevant:

N = 8 Supergravity: a strange coincidence? $SO(8) \rightarrow SU(3) \times U(1)$ breaking and 'family-color locking'

$(u,c,t)_L$:	${f 3}_c imes ar{f 3}_f o {f 8} \oplus {f 1} \;,$	$+\frac{1}{2} = \frac{2}{3} - q$
$(ar{u},ar{c},ar{t})_L$:	$ar{3}_c imes 3_f o 8 \oplus 1 \; ,$	$-\frac{1}{2} = -\frac{2}{3} + q$
$(d,s,b)_L$:	${f 3}_c imes {f 3}_f o {f 6} \oplus ar{f 3} \;,$	$-\frac{1}{6} = -\frac{1}{3} + q$
$(\bar{d},\bar{s},\bar{b})_L$:	$ar{f 3}_c imesar{f 3}_f oar{f 6}\oplus{f 3}\;,$	$+\frac{1}{6} = \frac{1}{3} - q$
$(e^-,\mu^-, au^-)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	$-\frac{5}{6} = -1 + q$
$(e^+,\mu^+,\tau^+)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	$+\frac{5}{6} = 1 - q$
$(u_e, u_\mu, u_ au)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	$-\frac{1}{6} = -q$
$(ar u_e,ar u_\mu,ar u_ au)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	$+\frac{1}{6} = q$

Supergravity and Standard Model assignments agree if spurion charge is chosen as $q = \frac{1}{6}$ [Gell-Mann (1983)] Realized at $SU(3) \times U(1)$ stationary point! [Warner,HN, NPB259(1985)412]

Fixing the spurion charge with $K(E_{10})$

[Meissner,HN: Phys.Rev.D91(2015)065029; Kleinschmidt,HN: 1504.01586]

Spurion charge shift can be realised via $U(1)_q$

$$\mathcal{I} = \frac{1}{2} (T \wedge \mathbf{1} \wedge \mathbf{1} + \mathbf{1} \wedge T \wedge \mathbf{1} + \mathbf{1} \wedge \mathbf{1} \wedge T + T \wedge T \wedge T)$$

acting on 56 fermions χ^{ijk} in $8 \wedge 8 \wedge 8$ of SU(8), with $T = \varepsilon \otimes \mathbf{1}_4$ (imaginary unit in SU(3) × U(1) breaking).

 \mathcal{I} is *not* in SU(8) $\equiv K(E_7)$... but it is in $K(E_{10})!$

The proof requires over-extended root of $E_{10} \Rightarrow$ no way to realise *q*-shift with finite-dimensional R symmetries!

Also: $K(E_{10}) \supset W(E_{10}) \supset W(E_7) \supset PSL_2(7)$ \rightarrow a new family symmetry? [cf.: Chen, Perez, Ramond, 1412.6107]

A new way to connect up the Planck scale?

- Obvious need to go *beyond* N=8 supergravity but not exactly in the 'stringy way'.
- Family $SU(3)_f$ does not commute with $SU(2)_w$?
- No detour via low energy (N = 1) SUSY needed?
- $K(E_{10})$ contains transformations that act chirally on D = 4 fermions \rightarrow extension to full SM symmetries?
- NB: SU(2) is the maximal anomaly free subgroup of R symmetry group SU(8) [Derendinger, PLB151(1985)203] However, U(1)_Y assignments don't fit \rightarrow need another (anomaly-free) deformation within K(E₁₀)?

It would be rather striking if $K(E_{10})$ were needed to relate N = 8 supergravity to Standard Model fermions...

Outlook

- All results obtained so far indicate that E_{10} requires a setting beyond known concepts of space and time.
- In this case space-time, and with it, general covariance and *space-time supersymmetry* would have to be emergent. \Rightarrow
- Conventional (\equiv space-time) SUSY not sufficient?
- Can E_{10} supersede SUSY as a unifying principle?

Outlook

- All results obtained so far indicate that E_{10} requires a setting beyond known concepts of space and time.
- In this case space-time, and with it, general covariance and *space-time supersymmetry* would have to be emergent. \Rightarrow
- Conventional (\equiv space-time) SUSY not sufficient?
- Can E_{10} supersede SUSY as a unifying principle?
- Despite the existence of (at least) 10^{272000} string vacua [most recent figures from: Taylor, Wang:1511.03209; Schellekens:1601.02462]

N = 8 Supergravity remains the only theory that (after complete breaking of supersymmetry) gives 48 spin- $\frac{1}{2}$ fermions, and nothing more. Supersymmetry will have a role to play in the unification program ... but maybe not quite in the way that we have thought!

THANK YOU