Non-linear Supersymmetry

Cosmology, Amplitudes, UV completion

Renata Kallosh
Stanford

SUSY 2016, Melbourne, Australia,
July 7
Early Universe Inflation: first 10^{-35} sec

Model building to explain data using supergravity motivated by string theory (can’t use global susy, have to solve Einstein equations)

Absence of non-gaussianity: preference to a single very light scalar, inflaton, all other moduli have to be stabilized

Tilt of the power spectrum \[n_s \approx 0.96 \]

Primordial gravity waves \[r < 0.07 \]

Slow roll inflation, near de Sitter space

Current Universe acceleration: during the last few billion years

Cosmological constant, de Sitter space, provides a good fit to data \[\Lambda \approx 10^{-120} M_{Pl}^4 \]

Dark Matter ???
Supergravity Models with 2 Superfields: inflaton and stabilizer

Simplest T-models
RK, Linde, Roest 2013

Simplest E-models
Ferrara, RK, Linde, Porrati, 2013,
EXAMPLE: Start with the simplest chaotic inflation model

\[\frac{1}{\sqrt{-g}} \mathcal{L} = \frac{1}{2} R - \frac{1}{2} \partial \phi^2 - \frac{1}{2} m^2 \phi^2 \]

Modify its kinetic term

\[\frac{1}{\sqrt{-g}} \mathcal{L} = \frac{1}{2} R - \frac{1}{2} \left(\frac{\partial \phi^2}{1 - \frac{\phi^2}{6\alpha}} \right) - \frac{1}{2} m^2 \phi^2 \]

Switch to canonical variables

\[\phi = \sqrt{6\alpha} \tanh \frac{\varphi}{\sqrt{6\alpha}} \]

The potential becomes

\[V = 3\alpha m^2 \tanh^2 \frac{\varphi}{\sqrt{6\alpha}} \]

T-model
Plateau potentials α-attractors

\[\frac{1}{2} R - \frac{1}{2} \partial \varphi^2 - \alpha \mu^2 \left(\frac{\varphi}{\sqrt{6\alpha}} \right)^2 \]

Simplest T-model

\[\frac{1}{2} R - \frac{1}{2} \partial \varphi^2 - \alpha \mu^2 \left(1 - e^{\sqrt{\frac{2}{3\alpha}} \varphi} \right)^2 \]

Simplest E-model
b modes

Thomson scattering within local quadrupole anisotropies generates linear polarization.

Scalar modes $\sim T, E$

Tensor modes $\sim T, E, B$

Ratio $r = \Delta T / \Delta S$

Gravitational waves at LSS create B-mode polarization.

Probes Lyth bound of Inflation.

Ekpyrotic models $\Rightarrow r = 0$

Planck XX 2015

BICEP2 2014

W. Hu

Planck TT+lowP

Planck TT+lowP+BKP

Planck TT+lowP+BKP+BAO

Natural inflation

Hilltop quartic model

α attractors

Power-law inflation

Low scale SB SUSY

R^2 inflation

$V \propto \phi^3$

$V \propto \phi^2$

$V \propto \phi^{4/3}$

$V \propto \phi$

$V \propto \phi^{2/3}$

$N_s = 50$

$N_s = 60$

r < 0.07

RK, Linde, Roest, 2013

α-attractors, 2 yellow lines in the sweet spot of Planck data.
• Thomson scattering within local quadrupole anisotropies generates linear polarization
• Scalar modes \mathbf{T}, \mathbf{E}
• Tensor modes $\mathbf{T}, \mathbf{E}, \mathbf{B}$
• Ratio $r = \Delta T / \Delta S$
• Gravitational waves at LSS create \mathbf{B}-mode polarization
• Probes Lyth bound of Inflation
• Ekpyrotic models $\Rightarrow r = 0$

Lorenzo Moncelsi

Planck 2015
BICEP2 2014
W. Hu

$B > 0$
$B < 0$

Moriond 22/3/16
Planck XX 2015
BK14 w/ 95GHz 2016

α-attractors, 2 yellow lines in the sweet spot of Planck data

RK, Linde, Roest, 2013

Simple Fanned T-models

\[\phi^6 \]
\[\phi^2 \]

\[(\tanh \frac{\phi}{\sqrt{6\alpha}})^{2n} \]

\[(1 - e^{\sqrt{\frac{2}{3\alpha}} \phi})^{2n} \]
Any $\alpha < 20$
$r < 0.07$

Generic $\mathcal{N}=1$ supergravity

Any α

$3\alpha = R_{\text{Escher}}^2 \approx 10^3 r$

Hyperbolic geometry of a Poincaré disk
Special choices of α and future data

$\alpha = 2 \quad r \approx 6 \times 10^{-3}$

Fiber inflation

$\alpha = 1 \quad r \approx 3 \times 10^{-3}$

Critical point of superconformal $\mathcal{N}=1$ attractors, Higgs inflation, R^2 ...

$\alpha = 1/3 \quad r \approx 10^{-3}$

Maximal superconformal $\mathcal{N}=4$ model, maximal supergravity $\mathcal{N}=8$

$\alpha = 1/9 \quad r \approx 3 \times 10^{-4}$

1984 model of Goncharov-Linde

Any $\alpha < 20 \quad r < 0.07$

Generic $\mathcal{N}=1$ supergravity

All of these models fit the current data
Hunt for Big Bang
Gravitational Waves Gets
$40-Million Boost

The nonprofit Simons Foundation will fund a new observatory to search for signs of stretching in the very early universe.
Minimal Neutrino Chaotic Inflation

Nakayama, Takahashi, Yanagida, 2016
earlier work by Murayama, Yokoyama, starting 1993

Two right-handed neutrino superfields. One of them plays the role of the inflaton, while the other is necessary to stabilize the inflaton potential.

Multi-natural inflation model: sum of sinusoidal functions with different height and periodicity. The coupling to the matter fields via

$$\sin \phi \leq 1$$

allows to avoid the blow-up of the masses of leptons and Higgs at $\phi \sim \mathcal{O}(10)M_{Pl}$

But hard to fit the data

$$W = S \left(\sin \frac{\phi}{f} + Ce^{i \theta} \sin \frac{2\phi}{f} \right)$$
Minimal Sneutrino Chaotic Inflation
Nakayama, Takahashi, Yanagida, 2016
earlier work by Murayama, Yokoyama, starting 1993
Two right-handed neutrino superfields. One of them plays the role of the inflaton, while the other is necessary to stabilize the inflaton potential.

Multi-natural inflation model: sum of sinusoidal functions with different height and periodicity. The coupling to the matter fields via

\[\sin \phi \leq 1 \]

allows to avoid the blow-up of the masses of leptons and Higgs at \(\phi \sim \mathcal{O}(10) M_{Pl} \)

But hard to fit the data

\[W = S \left(\sin \frac{\phi}{f} + C e^{i\theta} \sin \frac{2\phi}{f} \right) \]

Sneutrino Inflation with \(\alpha \)-attractors
RK, Linde, Roest, Wrase, work in progress
Two right-handed neutrinos are partners of the inflaton and stabilizer field, respectively, which provides an ingredient for the seesaw mechanism generating light neutrino masses

In \(\alpha \)-attractor models the trigonometric restriction on couplings to matter is replaced by the hyperbolic one

\[(\tanh \varphi)^{2n} < 1 \]

Easy to fit the data
With linear supersymmetry it is possible to stabilize unwanted moduli in supergravity. This can be achieved by adding stabilization terms to Kahler potential, corresponding to sectional and bisectional curvatures of the moduli space.

However, it is somewhat difficult to find simple models in agreement with the data on inflation and especially to construct de Sitter vacua at the exit stage.

Moreover, the stabilizer superfield which helps to stabilize the sinflaton, did not have a clear Interpretation in string theory.
With linear supersymmetry it is possible to stabilize unwanted moduli in supergravity. This can be achieved by adding stabilization terms to Kahler potential, corresponding to sectional and bisectional curvatures of the moduli space.

However, it is somewhat difficult to find simple models in agreement with the data on inflation and especially to construct de Sitter vacua at the exit stage.

Moreover, the stabilizer superfield which helps to stabilize the sinflaton, did not have a clear Interpretation in string theory.

Therefore we use constrained superfields, starting from the nilpotent one corresponding to a non-linear realization of the Volkov-Akulov type supersymmetry

$$ S^2 = 0 $$

This is the simplest way to exit inflation into de Sitter space.

The second useful constrained multiplet in cosmological models is the orthogonal one: no worries about the sinflaton and inflatino

$$ S(\Phi - \bar{\Phi}) = 0 $$
Known to be negative in pure supergravity, without scalar fields, 1977, Townsend

\[\Lambda < 0 \quad \text{AdS} \]

Supergravity with a positive cosmological constant without scalars was not known.

\[\Lambda > 0 \quad \text{dS} \]

Constructed 38 years later, in 2015
Standard linear SUSY

1 Majorana fermion 1 complex scalar

\[
\mathcal{L} = -\frac{1}{2} (\partial_\mu A)^2 - \frac{1}{2} (\partial_\mu B)^2 - \frac{1}{2} i \bar{\psi} \gamma^\mu \partial_\mu \psi \\
- \frac{1}{2} m^2 A^2 - \frac{1}{2} m^2 B^2 - \frac{1}{2} i m \bar{\psi} \psi \\
- g m A (A^2 + B^2) - \frac{1}{2} g^2 (A^2 + B^2)^2 - i g \bar{\psi} (A - \gamma_5 B) \psi.
\]

Wess-Zumino, 1974: minimal SUSY with a

Majorana fermion and a complex scalar

Gravity NO-GO for de Sitter

AdS/CFT studies

\[\sqrt{|g|} \Lambda \leq 0\]

LHC, as of July 2016

No SUSY partners yet
Standard linear SUSY

1 Majorana fermion 1 complex scalar

\[\mathcal{L} = -\frac{1}{2} (\partial_{\mu} A)^2 - \frac{1}{2} (\partial_{\mu} B)^2 - \frac{1}{2} i \bar{\psi} \gamma^\mu \partial_{\mu} \psi \\
- \frac{1}{2} m^2 A^2 - \frac{1}{2} m^2 B^2 - \frac{1}{2} i m \bar{\psi} \psi \\
- g m A (A^2 + B^2) - \frac{1}{2} g^2 (A^2 + B^2)^2 - i g \bar{\psi} (A - \gamma_5 B) \psi. \]

Wess-Zumino, 1974: minimal SUSY with a Majorana fermion and a complex scalar

Gravity NO-GO for de Sitter

AdS/CFT studies

\[\sqrt{|g|} \Lambda \leq 0 \]

LHC, as of July 2016

No SUSY partners yet

Non-linear SUSY

1 Majorana fermion 2 Majorana fermions

\[\mathcal{L} = -f^2 + i \partial_{\mu} \bar{G} \sigma^{\mu} G + \frac{1}{4 f^2} G^2 \partial^2 G^2 \\
- \frac{1}{16 f^6} G^2 \bar{G}^2 \partial^2 G^2 \partial^2 \bar{G}^2 \]

Volkov, Akulov, 1972 Non-linearly realized supersymmetry: only fermions are present

In pure supergravity, de Sitter vacua were constructed in 2015

Bergshoeff, Freedman, RK, Van Proeyen; Hasegawa, Yamada; Kuzenko

\[\sqrt{|g|} \Lambda = \sqrt{|g|} f^2 > 0 \]
No-go theorems prohibit linearly realized supersymmetry.

$\mathcal{N}=1$ dS supergravity has a non-linearly realized supersymmetry.

Derived using superconformal symmetry and Lagrange multipliers or superspace methods.

Alternative derivation: starting with linear supergravity, taking limit to infinite mass of the scalar partner.

RK, Karlsson, Murli, 2015

Interaction with arbitrary matter multiplets

RK, Wrase
Schillo, van der Woerd, Wrase 2015
The hints came from inflationary model building: in α-attractor models (yellow lines on Planck r/n_s plot).

Non-linear supersymmetry is a nice feature that allows to stabilize extra moduli and reduce the evolution to the one driven by a single scalar inflaton.

Advanced versions of these models are based on a supersymmetry which is not a standard linear SUSY but a non-linear SUSY.

A feature known in non-perturbative string theory: D-branes with Born-Infeld vectors and Volkov-Akulov spinors

Easy to get rid of unwanted SUSY partners
Can be useful for LHC phenomenology???
The nilpotent chiral superfield

- **SUSY 101**: supersymmetry relates bosons and fermions
 Not necessarily!

- If we break supersymmetry we expect a massless goldstone fermion, the goldstino

- **Volkov, Akulov** 1972, 1973
The nilpotent chiral superfield

\[S_{VA} = \int E^0 \wedge E^1 \wedge E^2 \wedge E^3 = \int d^4 x \det(E), \]

\[E^\mu = dx^\mu + \bar{\chi} \gamma^\mu d\chi = dx^\nu (\delta^\mu_\nu + \bar{\chi} \gamma^\mu \partial_\nu \chi) \]

- Invariant under: \(\delta_\epsilon \chi = \epsilon + (\bar{\chi} \gamma^\mu \epsilon) \partial_\mu \chi \)
- There is only a fermion!
- Supersymmetry is non-linearly realized
- Supersymmetry is spontaneously broken
- The partner of the 1-fermion state is a 2-fermion state
The nilpotent chiral superfield

- This can be thought of as a chiral superfield that squares to zero

\[S = s + \sqrt{2}\theta \chi + \theta^2 F, \quad S^2 = 0 \]
The nilpotent chiral superfield

Volkov, Akulov 1972, 1973
Rocek; Ivanov, Kapustnikov 1978
Lindstrom, Rocek 1979
Casalbuoni, De Curtis, Dominici, Feruglio, Gatto 1989
Komargodski, Seiberg 0907.2441

• This can be thought of as a chiral superfield that squares to zero

\[S = s + \sqrt{2} \theta \chi + \theta^2 F, \quad S^2 = 0 \]

\[S^2 = 0 \quad \Rightarrow \quad s^2 = 2\sqrt{2}s\theta \chi = \theta^2(2sF - \chi \chi) = 0 \]
• In $N = 1$ supersymmetry in 4d we can have a so called nilpotent chiral superfield

Volkov, Akulov 1972, 1973
Rocek; Ivanov, Kapustnikov 1978
Lindstrom, Rocek 1979
Casalbuoni, De Curtis, Dominici, Feruglio, Gatto 1989
Komargodski, Seiberg 0907.2441

• This can be thought of as a chiral superfield that squares to zero

$$S = s + \sqrt{2} \theta \chi + \theta^2 F, \quad S^2 = 0$$

$$S^2 = 0 \quad \Rightarrow \quad s^2 = 2\sqrt{2} s \theta \chi = \theta^2 (2sF - \chi \chi) = 0$$

$$s = \frac{\chi \chi}{2F} = \frac{\chi_1 \chi_2}{F} \quad \Rightarrow \quad s \chi = 0 \quad \text{and} \quad s^2 = 0$$
The nilpotent chiral superfield

\[S = \frac{\chi \chi}{2F} + \sqrt{2} \theta \chi + \theta^2 F \]

- These nilpotent chiral superfields consist only of fermions!
The nilpotent chiral superfield

\[S = \frac{\chi \chi}{2F} + \sqrt{2} \theta \chi + \theta^2 F \]

• These nilpotent chiral superfields consist only of fermions!

• Supersymmetry is non-linearly realized and spontaneously broken \((F \neq 0)\)
The nilpotent chiral superfield

\[S = \frac{\chi \chi}{2F} + \sqrt{2} \theta \chi + \theta^2 F \]

• These nilpotent chiral superfields consist only of fermions!
• Supersymmetry is non-linearly realized and spontaneously broken \((F \neq 0)\)
• There is a variety of different actions but all are related to \(S_{VA}\) via non-linear field redefinitions

Kuzenko, Tyler 1009.3298, 1102.3043

• S-matrix is unique!
Early work on string theory SUSY breaking: Pradisi, Sagnotti, Gimon, Polchinski
Antoniadis, Dudas, Sugimoto, Uranga

Antoniadis, Dudas, Ferrara and Sagnotti, 2014
VA-Starobinsky supergravity

Ferrara, RK, Linde, 2014 application to cosmology, generic superconformal case

\[S = \frac{1}{a} \int \omega_0 \times \omega_1 \times \omega_2 \times \omega_3 \]

\[S^{D3} = 0 , \quad \bar{S}^{D3} = -2T_3 \int d^4 \sigma \det E \]

\[E = dX - \bar{\theta} \Gamma^m d\theta \]

D-brane VA geometric connection

Supersymmetric KKLT uplift

In advanced supergravity inflation, a stabilizer superfield is nilpotent
A universal role of the goldstino multiplet at the minimum of the inflationary potential

$$\Lambda = F_s^2 - 3m_{3/2}^2 > 0$$

Volkov-Akulov non-linearly realized supersymmetry of the purely fermionic multiplet is spontaneously broken. A tiny CC results from an incomplete cancellation of the positive goldstino and negative gravitino contribution to supergravity energy.

String theory landscape

sgoldstino is not a fundamental scalar but a bilinear combination of fermionic goldstino's divided by the value of the auxiliary field.

String Theory Realizations of the Nilpotent Goldstino

RK, Quevedo, Uranga 2015
Nilpotent superfield $S^2=0$

Stabilizer, helps to stabilize the sinflaton, no need to stabilize the sgoldstino

Allows to build models with the exit from Inflation into de Sitter space, which was practically impossible before in supergravity models

Ferrara, RK, Thaler 1512.00545, Carrasco, RK, Linde 1512.00546, Dall’Agata, Farakos 1512.02158

Orthogonal nilpotent (degree 3) superfield $SB=0$, $B^3=0$

$$B = \frac{1}{2i}(\Phi - \bar{\Phi})$$

Sgoldstino, sinflaton and inflatino vanish in the unitary gauge. Inflatino is not mixed with gravitino at the end of inflation!

Ultimate single field inflationary model in supergravity with two superfields (constrained)

Both multiplets live on anti-D3 brane

Using nilpotent orthogonal fields

Consider a theory

\[K = -\frac{3}{2} \alpha \log \left[\frac{(1 - \Phi \Phi')^2}{(1 - \Phi^2)(1 - \Phi')^2} \right] + S\bar{S} \]

\[W = Sf(\Phi) + g(\Phi) \]

The expression for the inflaton potential in these theories does NOT contain \(f'(\Phi) \)

\[V = f^2(\phi) - 3g^2(\phi) \]

\[\chi^s = 0 \]

\[F^\phi = 0 \]

The cosmological constant and the gravitino mass in the minimum are

\[\Lambda = f^2(0) - 3g^2(0) \quad m_{3/2} = g(0) \]

The canonical inflaton field \(\varphi \) is related to the original field \(\phi \) as follows:

\[\phi = \tanh \frac{\varphi}{\sqrt{6\alpha}} \]
Example 1:

\[f(\phi) = \sqrt{F^2(\phi) + a^2}, \quad g(\phi) = \sqrt{G^2(\phi) + b^2} \]

\[V = F^2(\phi) - 3G^2(\phi) + a^2 - 3b^2, \quad m_{3/2} = \sqrt{G^2(\phi) + b^2}. \]

In canonical variables,

\[V = F^2(\tanh \frac{\phi}{\sqrt{6\alpha}}) - 3G^2(\tanh \frac{\phi}{\sqrt{6\alpha}}) + a^2 - 3b^2 \]

Full functional freedom to chose any \(\alpha \)-attractor potential, with any cosmological constant and gravitino mass.

\[\Lambda = a^2 - 3b^2, \quad m_{3/2} = b. \]

T-model with CC
Example 2:

\[
K = -\frac{3}{2} \alpha \log \left[\frac{(\Phi + \bar{\Phi})^2}{4\Phi \bar{\Phi}} \right] + S\bar{S} \quad W = S f(\Phi) + g(\Phi)
\]

\[
f(\phi) = \sqrt{(1 - \phi)^2 + a^2}, \quad g(\phi) = b
\]

In canonical variables,

\[
V = M^2 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}} \varphi} \right)^2 + \Lambda
\]

For \(\alpha = 1\) it represents the Starobinsky model, but now it may have an arbitrary cosmological constant and gravitino mass.

\[
\Lambda = a^2 - 3b^2, \quad m_{3/2} = b.
\]
The absence of the inflatino also helps us argue that there **there is no problem with the unitarity bound during inflation in our refined class of models**. The effective cutoff in supergravity is the scale at which scattering amplitudes violate unitarity bound.

In the theories with nilpotent fields, during inflation with \(H \ll M_{\text{Pl}} \), this cutoff is expected at

\[
\Lambda_{\text{cut-off}} \simeq \left((H^2 + m_{3/2}^2) M_{\text{Pl}}^2 \right)^{1/4} > \sqrt{H M_{\text{Pl}}}
\]

This UV cut-off is much higher than the typical energy of inflationary quantum fluctuations \(O(H) \).

In general, there could be some additional contributions to scattering due to gravitino-inflatino mixing, but in the theory that we consider there is **no inflatino**, and therefore no violation of the unitarity bound is expected during inflation at sub-Planckian energy density.
Non-linearly realized supersymmetry

Constrained multiplets are partnerless.

Fermion without a scalar partner, Volkov-Akulov goldstino

Gauge field without a gaugino

Inflaton without sinflaton and without inflatino

These models can be derived by imposing Lagrange multipliers and solving equations of motion consistently.

Alternatively, one can start with a linear supersymmetry model and send the mass of the partners to infinity consistently. RK, Karlsson, Mosk, Murli, 2016

Generic constrained superfields can be coupled to gravity
Ferrara, RK, Van Proyen, Wrase, 2016
Dudas, Dall’Agata, Farakos, 2016
Aoki, Yamada, 2016

Talk by Aoki on Friday
The 32-component global supersymmetry of the action consists of 16 supersymmetries corresponding to a deformation of the original supersymmetries of the $\mathcal{N}=4$ Maxwell multiplet

The other 16 supersymmetries correspond to non-linear VA-type supersymmetries.
Dirac-Born-infeld-Volkov-Akulov and recent progress in amplitudes.

The amplitudes behave badly at large z in the complex plane, can’t use BCFW recursion relation.

New recursion relation were discovered using soft limit theorems. In particular in VA sector the 4-f-coupling is unique.

$$\langle 12 \rangle s_{12} \ [34] \quad \chi^2 \Box \chi^2$$

All n-point on-shell amplitudes are restored using new recursion relation or some related amplitude methods. 2016

S. He, Z. Liu, J-B. Wu
F. Cachazo, P. Cha, S. Mizera

A single particle soft limit of any 2n-point on-shell amplitude vanishes

A double-soft limit of any $(2n+2)$-point amplitude is related to $2n$-point amplitude in agreement with G/H coset structure of non-linear (super)symmetry of this model

$$[\ G, \ G] = H$$

as is known in case of $\frac{E_7(7)}{SU(8)}$.

double-soft theorems in DBI- VA theory will provide clues for the ‘mysterious non-linearly realized (super) symmetries of the theory’.
Double-soft limit

The double-soft limit in DBI-VA model relates amplitudes with two soft particles of spin $s = 0, 1/2, 1$ to amplitudes without these 2 particles. The small parameter $t \to 0$ is introduced as follows $\bar{\lambda}(p) \to t\bar{\lambda}(p)$, $\lambda(q) \to t\lambda(q)$

$$\mathcal{M}^{(s)}_{n+2} = t^{1+2s} \sum_{a=1}^{n} \frac{(k_a \cdot (q - p))^{2-2s}}{2k_a \cdot (p + q)} [p|a|q]^{2s} \mathcal{M}^s_n + \mathcal{O}(t^{2+2s})$$

For $s = 1/2$, for soft fermions, one can see that if either q or p actually vanish so that $\frac{(k_a \cdot (q - p))}{2k_a \cdot (p + q)} = \pm 1$, the amplitude vanishes as the single soft limit theorem is predicting. Also in $s = 1/2$ case

Non-linear supersymmetry algebra

$$\{Q_\alpha, \bar{Q}_{\dot{\alpha}}\} = P_{\alpha\dot{\alpha}}$$

G-broken symmetry \quad \quad H - unbroken symmetry
UV completion for constrained superfiels: string theory

1-loop quantum corrections to D3 brane action

Shmakova, 1999 using helicity amplitudes
De Giovanni, Santabrogio, Zanon, 1999, using superfields

Classical VA 4-point fermion helicity amplitude

<12> s_{12} [34]

They found on-shell 1-loop UV divergent amplitudes in Dirac-Born-Infeld-Volkov-Akulov model with 16 linear and 16 non-linear supersymmetries

VA 4-fermion part <12> [34] s (s^2 + 3/4 t^2)

\mathcal{N}=4 partner 4-vector part <12>^2 [34]^2 (s^2 + t^2 + u^2)

This is precisely the beginning of expansion of type I open string theory amplitude

\frac{\Gamma(s)\Gamma(t)}{\Gamma(1 + s + t)} K(\epsilon, p)

Excellent behavior at large s, fixed angles, non-analytic in D3brane tension

Schwarz, 82
Conclusion

• A nilpotent chiral multiplet and other constrained multiplets with non-linear supersymmetry are useful in cosmological inflationary model building.

• Necessary to construct de Sitter supergravity without scalars to describe dark energy and provide a supersymmetric KKLT.

• Present on the world-volume of D-branes in string theory and break SUSY spontaneously.

\[S^2 = S Y^i = S W_\alpha = S \overline{D}_\alpha \overline{H}^i = S(\Phi - \Phi) = 0 \]

• Fermion without a scalar, vector without a gluino, inflatons without an inflatino and without a sinflatons...
Back up slides
Planck 2016 results 1605.02985 suggest that the dark blue area may shift to the left by ½ of the error bar:

$$\Delta n_s \sim -0.0026$$

This may further improve the status of α attractors.
What is the problem with de Sitter supergravity?

$\mathcal{N}=1$

• Anti-de Sitter:

$$[P_\mu, P_\nu] = \mp \frac{1}{4L^2} M_{\mu\nu}$$

$\text{SO}(3,2)$ is $\text{SO}(4,1)$

• Superalgebra?

$$[P_\mu, Q_\alpha] = \frac{1}{4L} (\gamma_\mu Q)_\alpha$$

$$\{Q_\alpha, Q_\beta\} = -\frac{1}{2} (\gamma^\mu)_{\alpha\beta} P_\mu - \frac{1}{8L} (\gamma^{\mu\nu})_{\alpha\beta} M_{\mu\nu}$$

• Jacobi identities: only with lower sign (Anti-de Sitter)

Supergroup $\text{OSp}(1|4)$; $\text{sp}(4)=\text{so}(3,2)$

$\mathcal{N}>1$ Jacobi ok, but non-unitary reps

dS/CFT $\mathcal{N}=0$, negative masses
One can use an equivalent formulation, with Kahler potential preserving more of the symmetries of the theory.

Change the Kahler frame and use the most general W

\[K = -\frac{3}{2} \alpha \log \left[\frac{(1 - Z \bar{Z})^2}{(1 - Z^2)(1 - \bar{Z}^2)} \right] + S \bar{S} \quad W = A(Z) + S B(Z) \]

\[K = -\frac{3}{2} \alpha \log \left[\frac{(T + \bar{T})^2}{4TT} \right] + S \bar{S} \quad W = G(T) + S F(T) \]

\[T = e^{\sqrt{\frac{2}{3\alpha}} \Phi}, \quad Z = \tanh \frac{\Phi}{\sqrt{6\alpha}} \]

\[K = -3\alpha \log \left[\cosh \frac{\Phi - \bar{\Phi}}{\sqrt{6\alpha}} \right] + S \bar{S} \quad W = g(\Phi) + S f(\Phi) \]
The nilpotent chiral superfield

- Manifestly supersymmetric KKLT uplift

\[K = -3 \ln(T + \bar{T}) + s\bar{s} \]
\[W = W_0 + Ae^{-aT} + \mu^2 s \]

- The scalar potential for \(s^2 = 0 \) is

\[V = V_{KKLT} + \frac{\mu^4}{(T + \bar{T})^3} \]
The nilpotent chiral superfield

• Similarly for warping

\[K = -3 \ln(T + \bar{T} - s\bar{s}) \]
\[W = W_0 + Ae^{-AT} + \mu^2 s \]

• The scalar potential for \(s^2 = 0 \) is

\[V = V_{KKLT} + \frac{\mu^4}{3(T + \bar{T})^2} \]

• The second term is exactly what is expected for an anti-D3-brane uplift!
Orthogonal nilpotent superfield: sinflaton, inflatino, auxiliary field are not independent, all vanish in the unitary gauge \(\chi^s = 0 \)

\[
B \equiv \frac{1}{2i}(\Phi - \bar{\Phi}) \quad S^2 = 0
\]

\[
SB = 0 \quad B^3 = 0
\]

\[
\Phi = (\varphi + ib, \chi^\phi, F^\phi)
\]

\[
\Phi = \varphi + \frac{i}{2} \frac{\chi^s}{F^s} \sigma^\mu \frac{\bar{\chi}^s}{F^s} \partial_\mu \varphi + \frac{1}{8} \left(\left(\frac{\chi^s}{F^s} \right)^2 \partial_\nu \left(\frac{\bar{\chi}^s}{F^s} \right) \bar{\sigma}^\mu \sigma^\nu \frac{\bar{\chi}^s}{F^s} - \text{c.c.} \right) \partial_\mu \varphi
\]

\[
- \frac{i}{32} \left(\frac{\chi^s}{F^s} \right)^2 \left(\frac{\bar{\chi}^s}{F^s} \right)^2 \partial_\mu \left(\frac{\bar{\chi}^s}{F^s} \right) \left(\bar{\sigma}^\rho \sigma^\mu \bar{\sigma}^\nu + \bar{\sigma}^\mu \sigma^\nu \bar{\sigma}^\rho \right) \partial_\nu \left(\frac{\chi^s}{F^s} \right) \partial_\rho \varphi.
\]

\[
\chi^\phi = i\sigma^\mu \frac{\bar{\chi}^s}{F^s} \partial_\mu \Phi.
\]

\[
F^\phi = - \partial_\nu \left(\frac{\bar{\chi}^s}{F^s} \right) \bar{\sigma}^\mu \sigma^\nu \left(\frac{\bar{\chi}^s}{F^s} \right) \partial_\mu \Phi + \frac{1}{2} \left(\frac{\bar{\chi}^s}{F^s} \right)^2 \partial^2 \Phi.
\]
The scalars in the linearized action (2.1) and the linearized susy terms with \(m = 0, 1 \ldots 9 \), \(m' = 0, 1, 2, 3 \), \(I = 1, ..., 6 \),

\[
\Pi^{m'}_\mu = \delta^{m'}_\mu - \alpha^2 \bar{\lambda} \Gamma^{m'} \partial_\mu \lambda , \quad \Pi^I_\mu = \partial_\mu \phi^I - \alpha^2 \bar{\lambda} \Gamma^I \partial_\mu \lambda , \quad \mathcal{F}_{\mu \nu} \equiv F_{\mu \nu} - b_{\mu \nu} ,
\]

\(b_{\mu \nu} = 2 \alpha \bar{\lambda} \Gamma_{[\mu} \partial_{\nu]} \lambda - 2 \alpha \bar{\lambda} \Gamma_I \partial_{[\mu} \lambda \partial_{\nu]} \phi^I = - 2 \alpha \bar{\lambda} \Gamma_{m'} \partial_{[\mu} \lambda \Pi^m_{\nu]} - 2 \alpha \bar{\lambda} \Gamma_I \partial_{[\mu} \lambda \Pi^I_{\nu]} \)

The 32-component global supersymmetry of the action consists of 16 \(\epsilon \)-supersymmetries corresponding to a deformation of the original 16 supersymmetries of the \(\mathcal{N} = 4, d = 4 \) Maxwell multiplet

\[
\delta_\epsilon \phi^I = \frac{1}{2} \alpha \bar{\lambda} \Gamma^I [1 + \beta] \epsilon + \xi_\epsilon^\mu \partial_\mu \phi^I ,
\]

\[
\delta_\epsilon \lambda = - \frac{1}{2 \alpha} [1 - \beta] \epsilon + \xi_\epsilon^\mu \partial_\mu \lambda ,
\]

\[
\delta_\epsilon A_\mu = - \frac{1}{2} \bar{\lambda} (\Gamma_\mu + \Gamma_I \partial_\mu \phi^I) [1 + \beta] \epsilon + \frac{1}{2} \alpha^2 \bar{\lambda} \Gamma_m \left[\frac{1}{3} [1 + \beta] \epsilon \bar{\lambda} \Gamma^m \partial_\mu \lambda + \xi_\epsilon^\rho F_{\rho \mu} \right]
\]

The other 16 \(\zeta \)-supersymmetries correspond to VA-type supersymmetries

\[
\delta_\zeta \phi^I = - \alpha \bar{\lambda} \Gamma^I \zeta + \xi_\zeta^\mu \partial_\mu \phi^I ,
\]

\[
\delta_\zeta \lambda = \alpha^{-1} \zeta + \xi_\zeta^\mu \partial_\mu \lambda ,
\]

\[
\delta_\zeta A_\mu = \bar{\lambda} (\Gamma_\mu + \Gamma_I \partial_\mu \phi^I) \zeta + \xi_\zeta^\rho F_{\rho \mu} - \frac{1}{3} \alpha^2 \bar{\lambda} \Gamma_m \zeta \bar{\lambda} \Gamma^m \partial_\mu \lambda
\]

The action also has a global shift symmetry

\[
\delta \phi^I = a^I
\]
D3 action in linearized approximation

Linear Maxwell $\mathcal{N} = 4$ multiplet with $SU(4)$ symmetry

$$S_{\text{Maxw}} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + 2\bar{\psi}_a \psi^a - \frac{1}{8} \partial_\mu \varphi_{ab} \partial^\mu \varphi^{ab} \right)$$

1 vector, + and – helicity, 4 spin $\frac{1}{2}$, + and – helicity, 6 scalars, zero helicity

SUSY charges $Q_a, a=1,2,3,4$

shift helicity by 1/2

ϵ susy

η symmetries of the linear action

$$\delta A_\mu = 0, \quad \delta \varphi^{ab} = 0, \quad \delta \psi_a = -\frac{1}{2\alpha} \eta_a, \quad \delta \psi^a = -\frac{1}{2\alpha} \eta^a$$
Volkov-Akulov model with 4 non-linear supersymmetries

\[\mathcal{L}_{VA}(\lambda, \bar{\lambda}) = -\frac{1}{\kappa^2} \det A \]

\[A^\nu_{\mu} \equiv \delta^\nu_{\mu} + i\kappa^2 (\lambda \partial_\mu \sigma^\nu \bar{\lambda} - \partial_\mu \lambda \sigma^\nu \bar{\lambda}) \]

\[\delta_\epsilon \lambda^\alpha = \frac{1}{\kappa} \epsilon^\alpha - i\kappa (\lambda \sigma^\rho \bar{\epsilon} - \epsilon \sigma^\rho \bar{\lambda}) \partial_\rho \lambda^\alpha \]

\[\{ Q_\alpha, \bar{Q}_{\dot{\alpha}} \} = P_{\alpha \dot{\alpha}} \]

G/H \hspace{1cm} G-super-Poincare, H-translation

Adler zero: a single particle soft limit of any 2n-point on-shell amplitude vanishes

Proven by VA in 1972, new proof using amplitudes, 2014 Yu-tin Huang et al