# **Baryogenesis**

# M.J. Ramsey-Musolf *U Mass Amherst*





http://www.physics.umass.edu/acfi/

SUSY 16, Melbourne July 2016

# Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.82 \pm 0.23) \times 10^{-11}$$

### One number → BSM Physics

# Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.82 \pm 0.23) \times 10^{-11}$$

# One number → MMM M... Explanations



# Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.82 \pm 0.23) \times 10^{-11}$$

# One number → MMM M... Explanations

### Experiment can help:

- Discover ingredients
- Falsify candidates



# Ingredients for Baryogenesis



- B violation
- C & CP violation
- Out-of-equilibrium or CPT violation

# Ingredients for Baryogenesis



| Standard Model | BSM |
|----------------|-----|
|----------------|-----|

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

- /
- ×
  - ×

# Ingredients for Baryogenesis



Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

**BSM** 

Standard Model

| B violation (sphalerons)                                    | <b>✓</b> | <b>✓</b> |
|-------------------------------------------------------------|----------|----------|
| C & CP violation                                            | *        | V        |
| <ul> <li>Out-of-equilibrium or<br/>CPT violation</li> </ul> | *        | <b>✓</b> |

# Energy Scale (GeV)

# Baryogenesis Scenarios



# Baryogenesis Scenarios



# Baryogenesis Scenarios



Most directly testable

# Baryogenesis Scenarios



# Electroweak Baryogenesis

Was Y<sub>B</sub> generated in conjunction with electroweak symmetry-breaking?

### **Outline**

- I. Electroweak Baryogenesis in a Nutshell
- II. Electroweak Phase Transition
- III. CPV: the Baryon Asymmetry & EDMs
- IV. Outlook

### **Outline**

- I. Electroweak Baryogenesis in a Nutshell
- II. Electroweak Phase Transition Time permitting
- III. CPV: the Baryon Asymmetry & EDMs
- IV. Outlook



# I. EWB in a Nutshell









← New scalars

- Loop effects
- Tree-level barrier



"Strong" 1st order EWPT



























### II. Electroweak Phase Transition

Conditions for Electroweak Baryogenesis?

### EW Phase Transition: St'd Model





QCD Phase Diagram

### EW Phase Transition: St'd Model



*Increasing*  $m_h$ 

| Authors | $M_{\rm h}^C$ (GeV)  |
|---------|----------------------|
| [76]    | 80±7                 |
| [74]    | $72.4 \pm 1.7$       |
| [72]    | $72.3 \pm 0.7$       |
| [70]    | $72.4 \pm 0.9$       |
|         | [76]<br>[74]<br>[72] |



EW Phase Diagram

SM EW: Cross over transition

### EW Phase Transition: St'd Model



### *Increasing m<sub>h</sub>*

| Lattice        | Authors | $M_{\rm h}^C  ({\rm GeV})$ |
|----------------|---------|----------------------------|
| 4D Isotropic   | [76]    | 80±7                       |
| 4D Anisotropic | [74]    | $72.4 \pm 1.7$             |
| 3D Isotropic   | [72]    | $72.3 \pm 0.7$             |
| 3D Isotropic   | [70]    | $72.4 \pm 0.9$             |

SM EW: Cross over transition



EW Phase Diagram

How does this picture change in presence of new TeV scale physics? What is the phase diagram?

# EWPT "Poster Child": MSSM Light Stop Scenario



Thermal loops

### EW Phase Transition: SUSY



Increasing m<sub>h</sub>

New scalars



### MSSM: Light Stop Scenario

Lattice: Laine, Rummukainen



Decreasing RH stop mass

### EW Phase Transition: SUSY



Increasing m<sub>h</sub>

New scalars



### MSSM: Light Stop Scenario

Lattice: Laine, Rummukainen



Decreasing RH stop mass

### EW Phase Transition: MSSM



*Increasing*  $m_h$ 

—— New scalars

MSSM: Light RH stops

Carena et al 2008: MSSM strong 1<sup>st</sup> order EWPT: RH stop mass < 105 GeV





### EW Phase Transition: MSSM



Increasing m<sub>h</sub>

New scalars

MSSM: Light RH stops

Carena et al 2008: MSSM strong 1<sup>st</sup> order EWPT: RH stop mass < 105 GeV





### EW Phase Transition: MSSM



Increasing m<sub>h</sub>

New scalars

MSSM: Light RH stops

Carena et al 2008: MSSM strong 1<sup>st</sup> order EWPT: RH stop mass < 105 GeV





### EW Phase Transition: SUSY



Increasing m<sub>h</sub>

← New scalars

Light RH stops also affect Higgs properties

Curtin, Jaiswal, Meade 1203.2932

### $MSSM + \delta \lambda_4 (H_u^{\dagger} H_u)^2$



Katz, Perelstein, R-M, Winslow 1509.02934

# **Beyond the Poster Child**



- Gauge singlets (tree-level)
- EW multiplets (tree + loops)

# Beyond the Poster Child



- Gauge singlets (tree-level)
- EW multiplets (tree + loops)

Higgs portal: SUSY or otherwise

# EW Phase Transition: Higgs Portal



### EW Phase Transition: Higgs Portal



Increasing m<sub>h</sub>

New scalars

$$\mathcal{O}_4 = \lambda_{\phi H} \; \phi^\dagger \phi \; H^\dagger H$$





- Renormalizable
- φ : singlet or charged under SU(2)<sub>L</sub> x U(1)<sub>Y</sub>
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB





Increasing m<sub>h</sub>

New scalars

Real Singlet:  $\phi \rightarrow S$ 

Simplest Extension: two states  $h_1$  &  $h_2$ 



Increasing m<sub>h</sub>

New scalars

Real Singlet:  $\phi \rightarrow S$ 

Simplest Extension: two states  $h_1$  &  $h_2$ 





Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010



F  $T > T_c$   $T = T_c$   $S > T < T_c$ 

*Increasing*  $m_h$ 

— New scalars

Resonant di-Higgs production:





No & RM, arXiv:1310.6035 : LHC Discovery w/ 100 fb<sup>-1</sup>

















**Exotic Higgs Decays** 

?





Increasing  $m_h$ New scalars

- Step 1: thermal loops
- Step 2: tree-level barrier







Increasing m<sub>h</sub>

── New scalars

Real Triplet  $\Sigma \sim (1,3,0)$ 

Two-step EWPT & dark matter













# Strong 1st Order EWPT





Definitive probe of the possibilities  $\rightarrow$  LHC + next generation colliders

# III. CPV: Baryon Asymmetry & EDMs







| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-33</sup>         | <b>10</b> <sup>-29</sup> |
| ThO               | 8.7 x 10 <sup>-29</sup> ** | 10 <sup>-38</sup>         | 10 <sup>-28</sup>        |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> - <sup>31</sup> | <b>10</b> <sup>-26</sup> |

<sup>\* 95%</sup> CL \*\* e- equivalent

| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-33</sup>         | <b>10</b> <sup>-29</sup> |
| ThO               | 8.7 x 10 <sup>-29</sup> ** | 10 <sup>-38</sup>         | <b>10</b> <sup>-28</sup> |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> - <sup>31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e-equivalent

#### Mass Scale Sensitivity



$$\sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

M < 500 GeV 
$$ightarrow$$
 sin $\phi_{ extsf{CP}}$  < 10-2

| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-33</sup>         | <b>10</b> <sup>-29</sup> |
| ThO               | 8.7 x 10 <sup>-29</sup> ** | 10 <sup>-38</sup>         | 10 <sup>-28</sup>        |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> - <sup>31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e-equivalent



- \* neutron
- proton& nuclei
- ★ atoms

~ 100 x better sensitivity

Not shown: muon

| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-33</sup>         | <b>10</b> <sup>-29</sup> |
| ThO               | 8.7 x 10 <sup>-29</sup> ** | 10 <sup>-38</sup>         | <b>10</b> <sup>-28</sup> |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> - <sup>31</sup> | <b>10</b> <sup>-26</sup> |

<sup>\* 95%</sup> CL \*\* e-equivalent

### Mass Scale Sensitivity



$$\sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

M < 500 GeV 
$$\rightarrow$$
 sin $\phi_{CP}$  < 10<sup>-2</sup>

| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-33</sup>         | <b>10</b> <sup>-29</sup> |
| ThO               | 8.7 x 10 <sup>-29</sup> ** | 10 <sup>-38</sup>         | <b>10</b> <sup>-28</sup> |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> - <sup>31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e-equivalent

#### Mass Scale Sensitivity



- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
  - CPV is "partially secluded"

# EDMs & EWBG: MSSM & Beyond



Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

# EDMs & EWBG: MSSM & Beyond



Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases











Flavor basis (high T)

$$\mathcal{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[ (Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_{\tau}(\cos\phi_{\tau}\bar{\tau}\tau + \sin\phi_{\tau}\bar{\tau}i\gamma_{5}\tau)h$$

Guo, Li, Liu, R-M, Shu 1607.XXXX





Flavor basis (high T)

$$\mathcal{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[ (Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$rac{\mathit{CPV}\,\mathsf{h} o au au}{v} \kappa_{ au} (\cos\phi_{ au}ar{ au} au + \sin\phi_{ au}ar{ au}i\gamma_5 au) h$$

Guo, Li, Liu, R-M, Shu 1607.XXXX







Flavor basis (high T)

$$\mathcal{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[ (Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$rac{\mathit{CPV}\,\mathsf{h} o au au}{v} \kappa_{ au} (\cos\phi_{ au}ar{ au} au + \sin\phi_{ au}ar{ au}i\gamma_{5} au) h$$

Guo, Li, Liu, R-M, Shu 1607.XXXX

# Two-Step EW Baryogenesis





#### Illustrative Model:

New sector: "Real Triplet"  $\Sigma$  Gauge singlet S

*H* → Set of "SM" fields: 2 HDM

(SUSY: "TNMSSM", Coriano...)

#### Two CPV Phases:

 $\delta_{\Sigma}$ : Triplet phase

 $\delta_{\mathcal{S}}$  : Singlet phase

# Two-Step EW Baryogenesis & EDMs



EDMs are Two Loop

Two CPV Phases:

 $\delta_{\Sigma}$ :

Triplet phase

Singlet phase

Insensitive to  $\delta_S$ : electrically neutral o "partially secluded"

# Two-Step EW Baryogenesis & EDMs

Two cases: (A)  $\delta_S = 0$  (B)  $\delta_\Sigma = 0$ 



# **CPV** for **EWBG**





#### IV. Outlook

- Explaining the origin of the matter-antimatter asymmetry is a forefront challenge for BSM physics
- Electroweak baryogenesis remains one of the most theoretically rich & experimentally accessible scenarios: "Was the baryon asymmetry produced in conjunction with electroweak symmetry-breaking?"
- EDMs & collider studies (LHC & beyond) provide powerful probes of the ingredients & results to date challenge theoretical creativity
- Exciting array of possibilities to be explored

Refs: 1604.05324, 1206.2942

# Back Up Slides

# LHC Stop Searches











### EW Phase Transition: 100 TeV pp



Curtain, Meade, Yu: arXiv: 1409.0005

#### Z<sub>2</sub> symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for  $\mu_S^2 < 0$

VBF @ 100 TeV pp:

$$pp \rightarrow h jj$$
,  $h \rightarrow invis$ 





<sup>\*</sup> Singlet two step: see also Profumo, R-M, Shaugnessy 2007

### EDMs & EWBG: MSSM & Beyond



$$sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

$$M < 500 \; \text{GeV} \rightarrow \sin \phi_{CP} < 10^{-2}$$

Universal gaugino phases

 $Arg(\mu M_i b^*) =$ 

 $Arg(\mu M_i b^*)$ 



Cirigliano, R-M, Tulin, Lee '06



Ritz CIPANP 09 + Cirigliano, R-M, Tulin, Lee '06 77