Distance Visual Acuity Test (E Game)
(Read in good light at 10 feet.)

Line 1
20/200

Line 2
20/100

Line 3
20/40

Line 4
20/20

100 Millimeter Calibration Bar
(If not 100 mm, see text of visual acuity page.)
Distance Visual Acuity Test (E-Game)
(Read in good light at 10 feet.)
SUSY 2016 (Melbourne, Australia)
SUSY 2015 (Lake Tahoe, USA)
SUSY 2014 (Manchester, UK)
SUSY 2013 (Trieste, Italy)
SUSY 2012 (Beijing, China)
SUSY 2011 (Fermilab, USA)
SUSY 2010 (Bonn, Germany)
SUSY 2009 (Boston, USA)
SUSY 2008 (Seoul, Korea)
SUSY 2007 (Karlsruhe, Germany)
SUSY 2006 (Irvine, USA)
SUSY 2005 (Durham, UK)
SUSY 2004 (KEK, Japan)
SUSY 2003 (Arizona, USA)
SUSY 2002 (DESY, Germany)
SUSY 2001 (Dubna, Russia)
SUSY 2000 (CERN, Switzerland)
SUSY 1999 (Fermilab, USA)
SUSY 1998 (Oxford, UK)
SUSY 1997 (Pennsylvania, USA)
SUSY 1996 (Maryland, USA)
SUSY 1995 (Paris, France)
SUSY 1994 (Michigan, USA)
SUSY 1993 (Northeastern, USA)

24 SUSY conferences!

cf.
33 ICHEP
27 Lepton Photon
27 Neutrino
The Other Half of the Universe Discovered

Geneva, Switzerland

July 23, 2011

The New York Times

Squarks

\[J=0? \]

The following data are averaged over all light flavors, presumably u, d, s, c with both chiralities. For flavor-tagged data, see listings for Stop and Sbottom. Most results assume minimal supergravity, an untested hypothesis with only five parameters. Alternative interpretation as extra dimensional particles is possible. See KK particle listing.

SQUARK MASS

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>538±10</td>
<td>OUR FIT</td>
<td></td>
<td>mSUGRA assumptions</td>
</tr>
<tr>
<td>532±11</td>
<td>1ABBIENDI 11D</td>
<td>CMS</td>
<td>Missing ET with mSUGRA assumptions</td>
</tr>
<tr>
<td>541±14</td>
<td>2ADLER 11O</td>
<td>ATLAS</td>
<td>Missing ET with mSUGRA assumptions</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc • • •

Extended mSUGRA with 5 more parameters

1ABBIENDI 11D assumes minimal supergravity in the fits to the data of jets and missing energies and set \(A_0=0 \) and \(\tan \beta = 3 \). See Fig. 5 of the paper for other choices of \(A_0 \) and \(\tan \beta \). The result is correlated with the gluino mass \(M_3 \). See listing for gluino.

2ADLER 11O uses the same set of assumptions as ABBIENDI 11D, but with \(\tan \beta = 5 \).

3ABBIENDI 11K extends minimal supergravity by allowing for different scalar masses-squared for Hu, Hd, 5^* and 10 scalars at the GUT scale.

SQUARK DECAY MODES

<table>
<thead>
<tr>
<th>MODE</th>
<th>BR(%)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>j+miss</td>
<td>32±5</td>
<td>ABE 10U</td>
<td>ATLAS</td>
<td>lepton universality</td>
</tr>
<tr>
<td>j l+miss</td>
<td>73±10</td>
<td>ABE 10U</td>
<td>ATLAS</td>
<td></td>
</tr>
<tr>
<td>j e+miss</td>
<td>22±8</td>
<td>ABE 10U</td>
<td>ATLAS</td>
<td></td>
</tr>
<tr>
<td>j μ +miss</td>
<td>25±7</td>
<td>ABE 10U</td>
<td>ATLAS</td>
<td></td>
</tr>
<tr>
<td>q (\chi^+)</td>
<td>seen</td>
<td>ABE 10U</td>
<td>ATLAS</td>
<td></td>
</tr>
</tbody>
</table>
no sign of new physics!
Why SUSY?

- mathematically interesting
- string theory needs it
- rationale for scalars
- helps stabilize inflaton potential
- gauge coupling unification
- dark matter candidate
- hierarchy (naturalness) problem
- fun for colliders
- baryogenesis?
- cosmological constant? 10^{-120} to 10^{-60}
Why not SUSY?

- flavor problem
- CP problem
- gravitino problem
- proton decay (both GUT and M_{Pl})
- SUSY breaking models tend to be contrived
- triplet-doublet splitting in SUSY GUT
- $m_h=125\text{GeV}$ too heavy for MSSM
- no experimental signature
Why SUSY?

• mathematically interesting
• string theory needs it
• rationale for scalars
• helps stabilize inflaton potential
• gauge coupling unification
• dark matter candidate
• hierarchy (naturalness) problem
• fun for colliders
• baryogenesis?
• cosmological constant? 10^{-120} to 10^{-60}
July 4, 2012

discovery of Higgs boson

theory : 1964

design : 1984

construction : 1998
naturalness

- Higgs boson is the *only spin 0 particle* in the standard model
- it is *faceless*
- one of its kind, no context
- but does the most important job
- looks very artificial
- we still don’t know *dynamics* behind the Higgs condensate
- *Higgsless theories*: now dead
Theoretical Foundation for Scalar Bosons?

Supersymmetry
- Higgs just one of many scalar bosons
- SUSY loops make m_h^2 negative

Composite
- spins cancel among constituents
- condensate by a strong attractive force, holography

Extra dimension
- Higgs spinning in extra dimensions
- new forces from particles running in extra D

another “naturalness” argument
Multiverse
Naturalness
Nima’s anguish

$m_H = 125$ GeV seems almost maliciously designed to prolong the agony of BSM theorists....
dream case for experiments
can measure them all!
What is Higgs really?

Only one? (SM)
has siblings? (2DHM)
not elementary?

ILC
Lumi 1920 fb-1, sqrt(s) = 250 GeV
Lumi 2670 fb-1, sqrt(s) = 500 GeV

MSSM (tan\(\beta\) = 5, \(M_\chi = 700\) GeV)

MCHM5 (\(f = 1.5\) TeV)
Why SUSY?

- mathematically interesting
- string theory needs it
- rationale for scalars
- helps stabilize inflaton potential
- gauge coupling unification
- dark matter candidate
- hierarchy (naturalness) problem
- fun for colliders
- baryogenesis?
- cosmological constant? \(10^{-120}\) to \(10^{-60}\)
Electron mass is natural by doubling #particles

- Electron creates a force to repel itself
 \[\Delta m_e c^2 \sim \frac{e^2}{r_e} \sim \text{GeV} \frac{10^{-17} \text{cm}}{r_e} \]
- \(10^{-4}\) fine-tuning?
- quantum mechanics and anti-matter
 \[\Rightarrow \text{only 10\% of mass even for Planck-size } r_e \sim 10^{-33} \text{cm} \]

\[\Delta m_e \sim m_e \frac{\alpha}{4\pi} \log(m_e r_e) \]
Higgs mass is natural by doubling #particles?

- Higgs also repels itself
- Double #particles again ⇒ superpartners
- only log sensitivity to UV
- Standard Model made consistent up to higher energies

\[\Delta m_H^2 \sim \frac{\alpha}{4\pi} m_{SUSY}^2 \log(m_H r_H) \]

I still take it seriously
Naturalness works!

- Inflation
- horizon problem
- flatness problem
- large entropy
IF SUPERSYMMETRY DOESN'T PAN OUT, SCIENTISTS NEED A NEW WAY TO EXPLAIN THE UNIVERSE?
Three hundred and fifteen physicists worked on the experiment.

Their apparatus included the Tevatron, the world's most powerful particle accelerator, as well as a $65 million detector weighing as
been there before

- CMB anisotropy
- universe younger than oldest stars?
- cosmologists got antsy
- it turned out a little “fine-tuned”
 - low quadrupole
 - dark energy

1% tuning
ATLAS

theorists

LHCb

CMS

healthy field!
Why SUSY?

• mathematically interesting
• string theory needs it
• rationale for scalars
• helps stabilize inflaton potential
• gauge coupling unification
• dark matter candidate
• hierarchy (naturalness) problem
• fun for colliders
• baryogenesis?
• cosmological constant? 10^{-120} to 10^{-60}
Grand Unification

Minimal Standard Model

Minimal Supersymmetric Model

$\alpha^{-1}\langle \mu \rangle$

μ [GeV]
In our numerical study we input the central values of g_1 and g_2 while for g_3 we require it in the 3σ at the electroweak scale. Other inputs at the electroweak scale, for example, the top Yukawa coupling y_t, are extracted from the SM taking into account threshold corrections.

Relevant details can be seen in the appendix of [15, 26]. Because of the uncertainty of the GUT scale threshold contributions, we adopt the criteria that gauge coupling unification is satisfied when the three couplings differ within the range <0.005.

Figure 1 shows the result of the parameter space (M^2, M_S, μ) with successful gauge coupling unification in case of universal condition Eq. (3.3) and non-universal condition Eq. (3.4), respectively. We can see that the gaugino unification gives a stringent constraint on the parameter space. From the upper-left panel we can find an upper bound for M_S, which is about 10^{16} GeV. Since split SUSY requires $M_S \gg \tilde{g}_i$, we can also obtain an upper bound for M^2 correspondingly. From the upper-right panel we can find upper limits for μ and M^2, which are around 100 TeV, independent of the M_S value. However, the constraints for the non-universal gaugino scenario are rather mild. From the lower panels, we can see that M_S can be as high as 10^{12} GeV while M^2 can be 10^9 GeV. The μ parameter, which plays an important role in gauge coupling unification, also has an upper bound around 10^5 GeV.
Dark Matter

Figure 2. The scatter plots of the (μ, M^2) parameter space satisfying constraints (1-4) including dark matter relic density. The green '×' (red '△') can (cannot) achieve the gauge coupling unification. The left panel is for the non-universal gaugino scenario proposed in this work while the right panel is for the universal gaugino scenario studied in our previous work [15].

Figure 3. Same as Fig.2, but showing the spin-independent cross section of dark matter scattering off the nucleon. The curves denote the limits from XENON100 (2012) and LUX as well as the future XENON1T sensitivity.

Acknowledgement

We are very grateful to the referee for useful comments. This work was supported by the Natural Science Foundation of China under grant numbers 11105124, 11105125, 11275245.
Supersymmetry breaking scale in GeV

Predicted range for the Higgs mass

- **High-Scale SUSY**
 - $\tan \beta = 50$
 - $\tan \beta = 4$
 - $\tan \beta = 2$
 - $\tan \beta = 1$

- **Split SUSY**

Giudice, Strumia

Experimentally favored

Scalar top mass ≥ 10 TeV preferred

5.1 Implications of present Higgs searches at the LHC

Recent data from ATLAS and CMS provide a 99% CL upper bound on the SM Higgs mass of 128 GeV and a hint in favor of a Higgs mass in the 124–126 GeV range [19]. The main implications for the scale of supersymmetry breaking can be read from Fig. 3 and are more precisely studied in Fig. 5, where we perform a fit taking into account the experimental uncertainties on the top mass and the strong coupling.

The scale of Split Supersymmetry is constrained to be below a few 10^{16} GeV. This implies

$\tan \beta$ assumption: MSSM

scalar top mass ≥ 10 TeV preferred
Better Late Than Never

Even $m_{\text{SUSY}} \sim 10$ TeV ameliorates fine-tuning from 10^{-36} to 10^{-4}
mini-split SUSY
pure gravity mediation

10-100 TeV

TeV

mz

scalars

gravitino

anomaly mediation

gauginos
higgsinos

Higgs
Why SUSY?

• mathematically interesting
• string theory needs it
• rationale for scalars
• helps stabilize inflaton potential
• gauge coupling unification
• dark matter candidate
• hierarchy (naturalness) problem
• fun for colliders
• baryogenesis?
• cosmological constant? 10^{-120} to 10^{-60}
Why not SUSY?

- flavor problem
- CP problem
- gravitino problem
- proton decay (both GUT and M_{Pl})
- SUSY breaking models tend to be contrived
- triplet-doublet splitting in SUSY GUT
- $m_h=125$GeV too heavy for MSSM
- no experimental signature
no sign of new physics

Squark-gluino-neutralino model

ATLAS Preliminary

$\int L \, dt = 20.3 \text{ fb}^{-1}$, $\sqrt{s} = 8 \text{ TeV}$

- 0-lepton combined

$\sum m = 8 \text{ TeV}$

$\frac{1}{2} \left(\sum m \right)$ = 0.5 GeV

Expected limit ($\frac{1}{2} \left(\sum m \right)$) = 7 TeV

important to see any new experimental signatures
Scherk-Schwarz

- Maybe SUSY hidden in the data
- break SUSY with boundary conditions in 5D
 \[PTP = T^{-1}, \quad P^2 = 1 \quad T = e^{i\alpha} \]
- @tree level, all SUSY particles degenerate at \(\alpha/R \) similar to UED
- automatically compressed spectrum
- SUSY as light as 1 TeV still OK

HM, Nomura, Shirai, Tobioka
Why SUSY?

• mathematically interesting
• string theory needs it
• rationale for scalars
• helps stabilize inflaton potential
• gauge coupling unification
• dark matter candidate
• hierarchy (naturalness) problem
• fun for colliders
• baryogenesis?
• cosmological constant? 10^{-120} to 10^{-60}
jets, respectively.

This procedure results in a background subtraction. The data are compared with the expected background, as shown in Fig. 3. The data are compared with the expected background shapes, obtained by signal-plus-background fits to the data. Closure tests are performed to estimate the background systematic uncertainties. The final background prediction in each case, while the other background extrapolations are treated as cross-checks.

Extrapolation from 4 Jets

Extrapolation from 5 Jets

Extrapolation from 6 Jets

Extrapolation from 7 Jets

Extrapolation from 8 Jets

(a) Low-mass search (12.4 fb⁻¹)

(b) High-mass search (19.4 fb⁻¹)

Top squark pair production using the NLO+NLL predictions for top squark production [32–36], where the limits are shown for both analyses. The production of top squarks undergoing RPV decays is constrained to masses above 300 GeV.

Figure 6 shows the observed and expected 95% CL upper limits on the cross section for top squark production. The expected limits are estimated with pseudo-experiments generated using the posterior density to 0.95 of the total gives the 95% CL limit for the signal cross section. The production of top squarks undergoing RPV decays is constrained to masses above 300 GeV.

The prompt limits (gray) are derived from [73]. They are conservatively cut off at 900 GeV, which is the measured number of events in the jet multiplicity (bottom) signal regions compared with expectations using the ATLAS HCAL and CMS dijet events. The CMS dijet pair results (recasted) show the mass region with 6 jets, and the CMS dijet pair results (recasted) show the 7-jet region with 0 b-tags.

R-Parity Violation

ATLAS multijet, arxiv:1502.05686

Ruth Pöttgen

(e.g. K- or B-meson oscillations)
Miracles

\[
\frac{n_{\text{DM}}}{s} = 4.4 \times 10^{-10} \text{ GeV} m_{\text{DM}}
\]

\[
\langle \sigma_2 \rightarrow 2\nu \rangle \approx \frac{\alpha^2}{m^2}
\]
\[
\alpha \approx 10^{-2}
\]
\[
m \approx 300 \text{ GeV}
\]

WIMP miracle

\[
\langle \sigma_3 \rightarrow 2\nu^2 \rangle \approx \frac{\alpha^3}{m^5}
\]
\[
\alpha \approx 4\pi
\]

Hochberg, Kuflik, Volansky, Wacker

\[
m \approx 300\text{MeV}
\]

SIMP miracle

Hochberg, Kuflik, Volansky, Wacker

arXiv:1402.5143
SIMPlest Miracle

Yonit Hochberg, Eric Kuflik, HM, Tomer Volansky, Jay Wacker

- SU(2) gauge theory with four doublets
- SU(4)=SO(6) flavor symmetry
- \langle q^i q^j \rangle \neq 0 breaks it to Sp(2)=SO(5)
- coset space SO(6)/SO(5)=S^5
- 5 stable pions
- \pi_5(S^5)=\mathbb{Z} \Rightarrow Wess-Zumino term

- \mathcal{L}_{WZ} = \varepsilon_{abcde} \varepsilon^{\mu \nu \rho \sigma} \pi^a \partial_\mu \pi^b \partial_\nu \pi^c \partial_\rho \pi^d \partial_\sigma \pi^e

SIMP miracle^3
also apparent lack of cusps in dwarf galaxies
explore dark sector

dark QCD with SIMP

photons

dark photon

Standard Model

\[\frac{e_\gamma}{2c_W} B_{\mu\nu} F_D^{\mu\nu} \]
$SU(2), N_f = 2$

$\alpha_D = 1/4\pi$

$m_\pi = 300 \text{ MeV}$
Super KEK B & Belle II

50 ab\(^{-1}\)!

\[E_\gamma = \frac{\sqrt{s}}{2} \left(1 - \frac{M_{\text{inv}}^2}{s} \right) \]
A LDM particle, in a hidden sector that couples weakly to ordinary matter through a light, neutral boson (the hidden photon), and four parameters: the mediator mass, the DM mass, the coupling of the mediator to DM, and the coupling of the mediator to electrons.

Figure 1: The production of $e^+e^- \rightarrow \gamma + \text{hidden photon}$.

- **Graph**: The graph shows the production rate $\frac{d\sigma}{dM_{\text{inv}}}$ in fb/GeV as a function of M_{inv} in GeV. The production peaks at low M_{inv} values, and \sqrt{s} is the center-of-mass energy.

- **Equation**: The energy of the photon is given by $E_\gamma = \frac{\sqrt{s}}{2} \left(1 - \frac{M_{\text{inv}}^2}{s}\right)$.

Model Parameters:

- $SU(2), N_f = 2$
- $m_\pi = 300 \text{ MeV}$, $m_{\rho_1} = 2.1 \times m_\pi$
- $m_V = 2 \text{ GeV}$
- $\alpha_D = 1/4\pi$, $\epsilon_\gamma = 2.3 \times 10^{-3}$

Explanation:

- In this model, the mediator is coupled to the SM quark sector via the ρ-meson.
- The mediator is produced in association with the hidden photon, which is invisible in detectors.
- The model is constrained by perturbativity, which requires $m_V < \sqrt{s}$.

Useful References:

- Belle II production rates, see e.g. [38–55] and references therein. A light mediator may play a significant role in the discovery of new physics.
- The model is viable in the context of $\nu\bar{\nu}\gamma$ searches in LDM scenarios, with cross-sections limited but not negligible.
- The model is consistent with small-scale structure constraints in CDMS cosmology [58, 59].
The hidden sector may generally contain a multitude of states with complicated interactions among themselves. For the context of this paper, it is sufficient to consider a light mediator, which, with \(m \) (the mediator mass) and \(g \) (the coupling of the mediator to DM), is part of many well-motivated frameworks. The focus of this paper – non-resonant LDM – is to study the mediator role in setting the DM relic density, or in alleviating possible problems with small-scale structure in CDM cosmology.

In this scenario, the mediator would be selectron exchange. In these, the mediator would couple to electrons, through an on- or off-shell light mediator, is part of many well-motivated frameworks. A LDM particle, in a hidden sector that couples weakly to ordinary matter through a light, neutral boson (the mediator), is part of many well-motivated frameworks. A light mediator may play a significant role in setting the DM relic density, or in alleviating possible problems with small-scale structure in CDM cosmology.

Resonant (i), non-resonant (ii), and pseudo-resonant (iii) processes, and direct detection experiments. In Sec. VI we give a brief theoretical overview of LDM coupled to electrons exchange (the coupling of the mediator to electrons) and DM particles also have a (very) limited e+e− collider. In Sec. IV we describe the production of such LDM at low-energy. (Note that in this paper, the symbol \(S \) is used for vector, pseudo-vector, scalar, and pseudo-scalar mediators. We stress that in ordinary matter through a light mediator.)

A LDM particle, in a hidden sector that couples weakly to ordinary matter through a light, neutral boson (the mediator), is part of many well-motivated frameworks. The simplest example of such a setup is DM that does not interact with the SM forces, but that nevertheless decays to the rest of the paper, the “dark matter” particle, in a hidden sector that couples weakly to ordinary matter through a light, neutral boson (the mediator).
to fluffy

moduli w/ vector mediation

QCD axion

sterile neutrino

gravitino

SIMP

asymmetric DM

WIMP

non-thermal

defects

mirolensing etc

no good idea
Rare effects from high energies

- Effects of high-energy physics mostly disappear by power suppression

\[\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots \]

- can be classified systematically

\[\mathcal{L}_5 = (LH)(LH) \rightarrow \frac{1}{\Lambda} (L\langle H \rangle) (L\langle H \rangle) = m_{\nu\nu\nu} \]

\[\mathcal{L}_6 = \bar{Q}QQL, \bar{L}\sigma^{\mu\nu}W_{\mu\nu}Hl, \epsilon_{abc}W_{\nu}^{a\mu}W_{\lambda}^{b\nu}W_{\mu}^{c\lambda}, \]

\[(H^\dagger D_\mu H)(H^\dagger D^\mu H), B_{\mu\nu}H^\dagger W^{\mu\nu}H, \cdots \]
Power of Expedition

- proton decay
- neutrino
- lepton flavor
- quark flavor
- EDM
- dark matter
- LHC

Experimental reach [GeV]
(with significant simplifying assumptions)

courtesy: Zoltan Ligeti
Effective Operators

- Classification surprisingly difficult question
- In the case of the Standard Model
 - Weinberg (1980) on $D=6$ \bar{B}, $D=5$ $\not{\Psi}$
 - Buchmüller-Wyler (1986) on $D=6$ ops
 - 80 operators for $N_f=1$, B, L conserving
 - Grzadkowski et al (2010) removed redundancies and discovered one missed
 - 59 operators for $N_f=1$, B, L conserving
 - redundancies due to EOM, IBP
- Mahonar et al (2013) general N_f
- Lehman-Martin (2014,15) $D=7$ for general N_f, $D=8$ for $N_f=1$ (incorrect)
Main idea

Brian Henning, Xiaochuan Lu, Tom Melia, HM

• Take kinetic terms as the zeroth order Lagrangian $(\partial \phi)^2, \bar{\psi} i \gamma \psi, (F_{\mu \nu})^2$
• Classically, it is conformally invariant under $SO(4,2) \cong SO(6, \mathbb{C})$
• Operator-State correspondence in CFT tells us that operators fall into representations of the conformal group
• equation of motion: short multiplets
• remove total derivatives: primary states

$$H(\mathcal{D}, \phi_1, \cdots, \phi_n) = \int d\mu_{\text{conf}} d\mu_{\text{gauge}} \sum_k \mathcal{D}^k \chi_{\Delta_0 + k, 0}^* \left[\frac{\phi_1}{D d_1} \chi_1 \right] \cdots \left[\frac{\phi_n}{D d_n} \chi_n \right]$$
\[N_f = 3 \]

\[N_f = 1 \]
One more Belle update, March 2016 (Moriond)

April 2016: The WA is now 4.0σ from the SM

arXiv: 1603.06711

Tom Browder
vector-like fermions?
KK graviton? radion?
compositeness?
extra Higgs?
Who ordered that?
Ambulance chasing, sometimes known as barratry, refers to a lawyer soliciting for clients at a disaster site. The term "ambulance chasing" comes from the stereotype of lawyers that follow ambulances to the emergency room to find clients.[1]

Description [edit]

Ambulance chasing is prohibited in the US. Such conduct violates Rule 7.3[2] of the American Bar Association Model Rules of Professional Conduct. Some bar associations strongly enforce rules against barratry. For example, the State Bar of California dispatches investigators to large-scale disaster scenes to discourage ambulance chasers, and to catch any who attempt to solicit business from disaster victims at the scene.[3]

Ambulance chasing is also illegal in Australia, in accordance with clauses 20 and 22 of the Legal Profession Regulation of 1987.

Literally following an ambulance to take advantage of its ability to pass red lights can be considered a form of slipstreaming, and is also illegal in many jurisdictions.

See also [edit]

- Personal injury lawyer
- Barratry
ICHEP 2016 CHICAGO
AUGUST 3-10, 2016
AT SHERATON GRAND CHICAGO
ICHEP2016.ORG
ABSTRACT SUBMISSION THROUGH FEB. 7, 2016
LOCAL ORGANIZING COMMITTEE
ED BLUCHER, UNIVERSITY OF CHICAGO
KAREN BYRUM, ARGONNE NATIONAL LABORATORY
MARCEL DEMARTEAU, ARGONNE NATIONAL LABORATORY
HOLLY HERNANDEZ, UNIVERSITY OF CHICAGO
YOUNG-KEE KIM (CHAIR), UNIVERSITY OF CHICAGO
MARVIN MARSHAK, UNIVERSITY OF MINNESOTA
KEVIN PITTS, UNIV. OF ILLINOIS, URBANA – CHAMPAIGN
RUTH VAN DE WATER, FERMILAB
NIKOS VARELAS, UNIVERSITY OF ILLINOIS, CHICAGO
MAYDA VELASCO, NORTHWESTERN UNIVERSITY
CHRIS WHITE, ILLINOIS INSTITUTE OF TECHNOLOGY
VISHNU ZUTSHI, NORTHERN ILLINOIS UNIVERSITY
The Other Half of the Universe Discovered
Geneva, Switzerland

SUSY 2036