The Higgs field and the early universe

Fedor Bezrukov

University of Connecticut & RIKEN-BNL Research Center

EPS HEP 2015 22–29 July 2015 Vienna, Austria

Outline

- Standard Model and the reality of the Universe
 - Standard Model is in great shape!
 - All new physics at low scale–vMSM
 - Top-quark and Higgs-boson masses and vacuum stability
- Stable Electroweak vacuum
- Metastable vacuum and Cosmology
 - Safety today
 - Safety at inflation

Lesson from LHC so far – Standard Model is good

- SM works in all laboratory/collider experiments (electroweak, strong)
- LHC 2012 final piece of the model discovered Higgs boson
 - \bullet Mass measured \sim 125 GeV weak coupling! Perturbative and predictive for high energies
- Add gravity
 - get cosmology
 - get Planck scale $M_P \sim 1.22 \times 10^{19}$ GeV as the highest energy to worry about

Lesson from LHC so far – Standard Model is good

- SM works in all laboratory/collider experiments (electroweak, strong)
- LHC 2012 final piece of the model discovered Higgs boson
 - \bullet Mass measured \sim 125 GeV weak coupling! Perturbative and predictive for high energies
- Add gravity
 - get cosmology
 - get Planck scale $M_P \sim 1.22 \times 10^{19}$ GeV as the highest energy to worry about

Many things in cosmology are not explained by SM

Experimental observations

- Dark Matter
- Baryon asymmetry of the Universe
- Inflation (nearly scale invariant spectrum of initial density perturbations)

Laboratory also asks for SM extensions

Neutrino oscillations

Nothing really points to a definite scale above EW

- Neutrino masses and oscillations (absent in SM)
 - Right handed neutrino between 1 eV and 10¹⁵ GeV
- Dark Matter (absent in SM)
 - Models exist from 10⁻⁵ eV (axions) up to 10²⁰ GeV (Wimpzillas, Q-balls)
- Baryogenesys (absent in SM)
 - Leptogenesys scenarios exist from $M \sim 10$ MeV up to 10^{15} GeV

Possible: New physics only at low scales – vMSM

Role of sterile neutrinos

 N_1 $M_1 \sim 1 - 50 \text{keV}$: (Warm) Dark Matter, Note: $M_1 = 7 \text{keV}$ has been seen in X-rays?!

 $N_{2,3}$ $M_{2,3} \sim$ several GeV: Gives masses for active neutrinos, Baryogenesys

What happens at the scales between Electroweak 200 GeV and Planck 10¹⁹ GeV?

- Is SM consistent everywhere there?
- Does any problems appear?
- If yes, does it point to any scale?

Assuming SM (vMSM), the only "subtleties" left are the Higgs boson potential and inflation

Higgs potential stability

- Absolutely stable
 Electroweak vacuum
- Metastable EW vacuum (true vacuum at/above Planck scale)

Higgs and inflation

- Higgs boson completely unrelated to inflation
- Higgs boson "feels" inflation
 - interacts with inflaton field (e.g. changes mass depending in inflaton background)
 - non-minimal coupling with gravitational background (changes properties in curved background)
- Higgs boson drives inflation itself (Higgs inflation from non-minimal couplign to gravity)

 Higgs self coupling constant λ changes with energy due to radiative corrections.

$$egin{aligned} (4\pi)^2eta_\lambda &= 24\lambda^2 - 6y_t^4 \ &+ rac{3}{8}(2g_2^4 + (g_2^2 + g_1^2)^2) \ &+ (-9g_2^2 - 3g_1^2 + 12y_t^2)\lambda \end{aligned}$$

- Behaviour is determined by the masses of the Higgs boson $m_H = \sqrt{2\lambda v}$ and other heavy particles (top quark $m_t = v_t v / \sqrt{2}$
- If Higgs is heavy $M_H > 170 \text{ GeV}$ the model enters strong coupling at some low energy scale – new physics required.

Lower Higgs masses: RG corrections push Higgs coupling to negative values

- For Higgs masses $M_H < M_{\text{critical}}$ coupling constant is negative above some scale μ_0 .
- The Higgs potential may become negative!
 - Our world is not in the lowest energy state!
 - Problems at some scale μ₀ > 10¹⁰ GeV?

Coupling λ evolution:

LHC result: SM is definitely perturbative up to Planck scale, and probably has metastable SM vacuum

We live close to the metastability boundary – but on which side?!

Future measurements of top Yukawa and Higgs mass are essential!

March 2014 - metastable?

July 2014 – oh, very metastable!

Mass of the Top Quark

September 2014 – hmm, maybe stable is ok?

Determination of top quark Yukawa

- Hard to determine mass in the events
- Hard to relate the "pole" (the same for "Mont-Carlo") mass to the MS top quark Yukawa
 - NLO event generators
 - Electroweak corrections important at the current precision goals!
- Build a lepton collider?
- Improve analysis on a hadron collider?

Higgs boson mass

- Experiment (measurements of SM masses) We are somewhere close to the boundary between stability and metastability
- Stable Electroweak vacuum looks safe
- Metastable is it ok?

0: 11		inflaton &	inflaton &	
Stable SM vacuum	inflaton = Higgs	Higgs independent	Higgs interacting	
Large r	Yes (threshold corr.)	Yes	Yes	
Small <i>r</i>	Yes	Yes	Yes	
Planck scale corections	Scale inv.	Any	Any	
		inflaton &	inflator 0	
Metastable SM vacuum	inflaton = Higgs	Higgs independent	inflaton & Higgs interacting	
***************************************		Higgs	Higgs	
SM vacuum	Higgs	Higgs independent	Higgs interacting Yes	

Stable EW vacuum – mostly anything works

- No problems throughout the whole thermal evolution of the Universe.
- Adding inflation many examples
 - R² inflation
 - Separate scalar inflaton interacting with the Higgs boson
 - non-minimally coupled Higgs inflation

Higgs inflation at tree level

Scalar part of the (Jordan frame) action

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M_{P}^{2}}{2}R - \xi \frac{h^{2}}{2}R + g_{\mu\nu} \frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^{2} - v^{2})^{2} \right\}$$

- h is the Higgs field; $M_P \equiv \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \text{GeV}$
- SM higgs vev $v \ll M_P/\sqrt{\xi}$ can be neglected in the early Universe
- At $h \gg M_P/\sqrt{\xi}$ all masses are proportional to h scale invariant spectrum!

Higgs inflation at tree level

Scalar part of the (Jordan frame) action

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M_{P}^{2}}{2}R - \xi \frac{h^{2}}{2}R + g_{\mu\nu} \frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^{2} - v^{2})^{2} \right\}$$

To get observed $\delta T/T \sim 10^{-5}$

$$\frac{\sqrt{\lambda}}{\xi} = \frac{1}{49000}$$

Mathematical trick - conformal transformation

$$g_{\mu
u}
ightarrow\hat{g}_{\mu
u}=\sqrt{1+rac{\xi\,\phi^2}{M_P^2}}\,g_{\mu
u},$$

leads to flattened potential:
$$V(\phi) \rightarrow \hat{V}(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2$$

CMB parameters are predicted

For large ξ Higgs inflation

spectral index $n \simeq 1 - \frac{8(4N+9)}{(4N+3)^2} \simeq 0.97$ tensor/scalar ratio $r \simeq \frac{192}{(4N+3)^2} \simeq 0.0033$

$$\delta T/T \sim 10^{-5} \implies \frac{\xi}{\sqrt{\lambda}} \simeq 47000$$

Note: for very near critical top quark/Higgs masses results change and allow for larger r

What to do if we are metastable?

Vacuum decays by creating bubbles of true vacuum, which then expand very fast $(v \rightarrow c)$

Tunneling suppression:

$$p_{
m decay} \propto {
m e}^{-S_{
m bounce}} \sim {
m e}^{-rac{8\pi^8}{3\lambda(h)}}$$

Note on Planck corrections

- Critical bubble size ~ Planck scale
- Potential corrections $V_{\text{Planck}} = \pm \frac{\phi^n}{M_0^{n-4}}$ change lifetime!
 - Only + sign is allowed for Planck scale corrections!

As far as we are "safe" now (i.e. at low energies), what about Early Universe? What happens with the Higgs boson at inflation?

- if Higgs boson is completely separate from inflation
- if Higgs boson interacts with inflaton/gravitation background
- if Higgs boson drives inflation

- Let us suppose Higgs is not at all connected to inflationary physics (e.g. R^2 inflation)
- All fileds have vacuum fluctuation
- Typical momentum $k \sim H_{inf}$ is of the order of Hubble scale

 If typical momentum is greater than the potential barrier – SM vacuum would decay if

$$H_{\rm inf} > V_{\rm max}^{1/4}$$

Most probably, fluctuations at inflation lead to SM vacuum decay...

 Observation of any tensor-to-scalar ratio r by CMB polarization missions would mean great danger for metastable SM vacuum!

Measurement of primordial tensor modes determines scale of inflation

$$H_{ ext{inf}} = \sqrt{rac{V_{ ext{infl}}}{3M_P^2}} \sim 8.6 imes 10^{13} \, ext{GeV} \left(rac{r}{0.1}
ight)^{1/2}$$

Does inflation contradict metastable EW vacuum?

- Higgs interacting with inflation can cure the problem. Examples
 - Higgs (ϕ) -inflaton (χ) interaction may stabilize the Higgs

$$L_{\rm int} = -\alpha \phi^2 \chi^2$$

 Higgs-gravity negative non-minimal coupling stabilizes Higgs in de-Sitter (inflating) space

$$L_{\rm nm} = \xi \phi^2 R$$

 New physics below μ₀ may remove Planck scale vacuum and make EW vacuum stable – many examples

New physics above μ_0 may solve the problem

Requirements

- Minimum at Planck scale should be removed (but can remain near $\mu_0 \sim 10^{10} \, \text{GeV}$)
- Reheating after inflation should be fast.

No need for new physics at "low" ($< \mu_0$) scales! Example: Higgs inflation with threshold corrections at M_0/ξ

After inflation symmetry is restored in preheating

- Thermal potential removes the high scale vacuum
- Universe cools down to EW vacuum

Higgs inflation and radiative corrections

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M_{P}^{2}}{2}R - \xi \frac{h^{2}}{2}R + g_{\mu\nu} \frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^{2} - v^{2})^{2} \right\}$$

(Not really to scale)

Stable SM vacuum	inflaton = Higgs	inflaton & Higgs independent	inflaton & Higgs interacting	
Large r	Yes (threshold corr.)	Yes	Yes	
Small <i>r</i>	Yes	Yes	Yes	
Planck scale corections	Scale inv.	Any	Any	
Metastable SM vacuum	inflaton =	inflaton & Higgs	inflaton &	
2 1 30000111	Higgs	independent	Higgs interacting	
Large r	Higgs No		0.0	
		independent	interacting Yes	

Conclusions

- The scale of new physics is yet unknown!
- If all new physics is below EW scale, intriguing relations between Planck scale and Electroweak physics are possible,
- Precise measurements of the SM paramters
 - Lepton collider top quark mass (Yukawa)
 - Higgs boson mass and properties
- Cosmology inflationary parameters, especially tensor-to-scalar ratio

And search for new physics at low scale!

- SHIP search for new light particles heavy sterile neutrinos
- FCC search for sterile neutrinos with larger masses
- Astrophysics search for X-rays from decaying Dark Matter

Signal in Perseus cluster

Data by Chandra and XMM-Newton, Bulbul et.al'13, Boyarsky et.al'13

Sterile neutrino N_1 parameters required

FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the top 1st are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line region.

- Leptogenesys by $N_{2,3}$ $\Delta M/M \sim 10^{-3}$
- Experimental searches
 - N_{2,3} production in hadron decays (LHCb):
 - Missing energy in K decays
 - Peaks in Dalitz plot
 - N_{2,3} decays into SM
 - Beam target: SHiP
 - High luminosity lepton collider at Z peak

Note: Other related models (e.g. scalars for DM generation, light inflaton) also show up in such experiments

RG running indicates small λ at Planck scale

Renormalization evolution of the Higgs self coupling λ

$$\lambda \simeq \lambda_0 + b \ln^2 rac{\mu}{q}$$

$$egin{aligned} b &\simeq 0.000023 \ \lambda_0 - ext{small} \ q ext{ of the order } M_p \end{aligned}$$

depend on M_h^* , m_t^{20}

Higgs mass $M_h=125.3\pm0.6$ GeV

$$(4\pi)^2 \frac{\partial \lambda}{\partial \ln \mu} = 24\lambda^2 - 6y_t^4$$
$$+ \frac{3}{8}(2g_2^4 + (g_2^2 + g_1^2)^2)$$
$$+ (-9g_2^2 - 3g_1^2 + 12y_t^2)\lambda$$

RG running indicates small λ at Planck scale

Potentials in different regimes

$$\lambda \simeq \lambda_0 + b \ln^2 rac{\mu}{q}$$

$$b \simeq 0.000023$$

 $\lambda_0 - \text{small}$
 q of the order M_p

depend on M_h^* , m_t^2

$$U(\chi) \simeq rac{\lambda(\mu) M_P^4}{4\xi^2} \left(1 - e^{-rac{2\chi}{\sqrt{6}M_P}}
ight)^2$$

$$\mu^2 = \alpha^2 \frac{y_t(\mu)^2}{2} \frac{M_P^2}{\xi} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}} \right)$$

Interesting inflation near to the critical point

Parameters in particle physics: λ_0 , q, ξ cosmology: \mathscr{P}_R , r, n_s

 $\kappa \sim q \frac{\sqrt{\xi}}{M_P} \frac{\sqrt{2}}{y_t}$ For given r (or ξ) very small change of κ (or M_h^*) gives any n_s

