

Techniques

Accelerator

Patric Muggli

Novel

Max Planck Institute for Physics Munich <u>muggli@mpp.mpg.de</u>

https://www.mpp.mpg.de/~muggli

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

PARTICLE ACCELERATORS

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

Some of the largest and most complex (and most expensive) scientific instruments ever built!

All use RF technology to accelerate particles

Can we make them smaller (and cheaper) and with a higher energy?

PARTICLE ACCELERATORS

Light particles (e⁻/e⁺) accelerator limited by synchrotron radiation

$$P_{synchr} = \frac{e^2}{6\pi\varepsilon_0 c^7} \frac{E^4}{R^2 m^4}$$

Must be linear and ...

$$L = \frac{E(eV)}{G(eV/m)}$$

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

e⁻/e⁺ 0-20GeV in 2km FACET e⁻ 0-14GeV in 1km LCLS

complex (and most expensive) scientific

ate particles

Can we make them smaller (and cheaper) and with a higher energy?

PARTICLE ACCELERATORS

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

Search for a new technology to accelerate particles at high-gradient (>100MeV/m) and reduce the size and cost of a future e⁻/e⁺, e⁻/p⁺ collider or of a x-ray FEL

> e⁻/e⁺ 0-20GeV in 2km FACET e⁻ 0-14GeV in 1km LCLS

Some of the largest and most complex (and most expensive) scientific instruments ever built!

All use RF technology to accelerate particles

Can we make them smaller (and cheaper) and with a higher energy?

OUTLINE

♦ Novel Accelerator Techniques "Goals"

♦Summary

♦Novel Accelerator Techniques "Goals"

♦Summary

Gradient/field limit in (warm) RF structures: <100MV/m
RF break down (plasma!!) and pulsed heating fatigue
Accelerating field on axis, damage on the surface
Material limit, metals in the GHz freq. range (Cu, Mo, etc.)
Does not (seem to) increase with increasing frequency

e⁻ Bunch Cloud

Pulsed heating fatigue Pritzkau, PRSTAB 5, 112002 (2002)

P. Muggli, EPS-HEP 07/25/2015

GOALS

Reaching final energy : >150GeV/beam for e⁻ and e⁺ (determined by physics goals) : up to 1-10TeV

: > 60GeV e^{-} (for e^{-}/p^{+} collider, determined by physics goals)

Large <u>average</u> accelerating gradient (>1GeV/m)

Accelerator(s) a few 100's of meter long (not km's)

Reaching luminosity (e⁻/e⁺ or e⁻/p⁺, ions)

$$\mathcal{L} \propto \frac{N^+ N^- f_{rep} n_b}{\sigma_x^*(\varepsilon_x) \sigma_y^*(\varepsilon_y)} \quad \Leftrightarrow \quad \mathcal{L} \propto \frac{N P_b}{E \sigma_x^*(\varepsilon_x) \sigma_y^*(\varepsilon_y)}$$

•Focus on accelerator contribution (not final focus or interaction point)

•Assume those are the same (bunch length?)

 \diamond Deliver the same average (s) current with the same emittance (DWA, LWFA, PWFA)

Deliver lower average current with lower emittance?? (DLA)

APPLICATIONS

♦ X-ray for radiography (advanced: phase contrast, etc.)
 ♦ e⁻ for medical applications

♦All require low energy <GeV</p>

♦ Can operate at very large peak gradient, mm-cm accelerator

♦ Efficiency not an issue

♦ Luminosity "not an issue"

♦ Special characteristics: ultra-short, synchronized (laser), pump probe, etc.

Laser Wakefield Accelerator

LWFA

Plasma Wakefield Accelerator

PWFA

♦Biological advantage ...

♦Unique applications, compact

The lease of transfer of the second transfer

England, Rev. Mod. Phys., 86, 1337, (2014)

Powerful radiation source, THz to γ-rays
 High-energy physics (HEP)

Dielectric Laser Accelerator

DLA

Dielectric Wakefield Accelerator

DWA

OUTLINE

♦Novel Accelerator Techniques "Goals"

\diamond Directly use the laser E- field in a $\sim \lambda^3$ (micro) structure

♦Summary

DIELECTRIC LASER ACCELERATOR (DLA)

Proposed dielectric structures

© P. Muggli Courtesy P. Hommelhoff

MAX-PLANCK-GESELLSCHAFT P. Muggli, EPS-HEP 07/25/2015

vacuum

DLA RESULTS

Demonstration of electron acceleration in a laser-driven dielectric microstructure

E. A. Peralta¹, K. Soong¹, R. J. England², E. R. Colby², Z. Wu², B. Montazeri³, C. McGuinness¹, J. McNeur⁴, K. J. Leedle³, D. Walz², E. B. Sozer⁴, B. Cowan⁵, B. Schwartz⁵, G. Travish⁴ & R. L. Byer¹

7 NOVEMBER 2013 | VOL 503 | NATURE | 91

Peak incident electric field, E₀ (GV m⁻¹)

♦Inferred accelerating gradient in excess of 300MV/m, can be increased
♦Need sub-(λ_{laser})³ beams, naturally low emittance and charge
♦Operate at very high rep-rate

b

gradient, G (MeV m⁻¹)

Acceleration

-SLAC

Recent DLA Experiment Comparison

Parameter		Stanford	MQP/Erlangen
Year	2013	2015	2013
Material	Fused Silica	Silicon	Fused Silica
Beam Energy	60 MeV	96.3 keV	30 keV
$\beta = v/c$	0.9996	0.54	0.33
Laser Pulse Energy	330 µJ	5.2 nJ	160 nJ
Pulse Duration	1.1 ps	130 fs	110 fs
Interaction Length	360 µm	5.6 µm	11 µm
Max Energy Gain	100 keV	1.22 keV	275 eV
Max Gradient	309 MV/m	220 MV/m	25 MV/m

DLA RESULTS

Recent DL	A Experime	ent Comparie	son
Parameter		Stanford	MQP/Erlangen
Year	2013	2015	2013
Material	Fused Silica	Silicon	Fused Silica
Beam Energy	60 MeV	96.3 keV	30 keV
$\beta = v/c$	0.9996	0.54	0.33
Laser Pulse Energy	330 µJ	5.2 nJ	160 nJ
Pulse Duration	1.1 ps	130 fs	110 fs
Interaction Length	360 µm	5.6 µm	11 µm
Max Energy Gain	100 keV	1.22 keV	275 eV
Max Gradient	309 MV/m	220 MV/m	25 MV/m

Peralta, AIP Proc. 1507, 169 (2012)

TABLE VII. Strawman parameters for the DLA Linear Collider.

Parameter	Units	CLIC	DLA 3 TeV	DLA 250 GeV
Center-of-mass energy	GeV	3000	3000	250
Bunch charge	е	3.7×10^{9}	30 000	38 000
Bunches per train		312	159	159
Train repetition rate	MHz	5.0×10^{-5}	20	60
Bunch train length	ps	26 005	1.0	1.0
Single bunch length	μm	34.7	0.0028	0.0028
Design wavelength	μm	230 609	2.0	2.0
Invariant X emittance	μm	0.66	0.0001	0.002
Invariant Y emittance	μm	0.02	0.0001	0.002
IP X spot size	nm	45	1	2
IP Y spot size	nm	1	1	2
Beamstrahlung energy loss	%	28.1	1.0	0.6
Enhanced	cm^{-2}/s	2.0×10^{34}	3.2×10^{34}	1.3×10^{34}
luminosity/top 1%	, in the second s			
Beam power	MW	14.1	22.9	7.3
Wall-plug efficiency	%	4.8	12.2	9.5
Wall-plug power	MW	582	374	152
Gradient	MV/m	100	1000	1000
Total linac length	km	42.0	3.0	0.3

♦ Deliver lower average current with lower emittance?? (DLA)

DLA RESULTS

DLA Structure Development: Recent Progress

Relativistic energy experiments have shown high-gradient operation and set the stage for scaling DLA to multi MeV energies.

Courtesy of J. England

P. Muggli, EPS-HEP 07/25/2015

♦ Novel Accelerator Techniques "Goals"

Dielectric / Wakefields Cladding Drive Beam

Hollow Core

Layer

• Peak decelerating field

$$eE_{z,dec} \approx \frac{-4N_b r_e m_e c^2}{a \sqrt{\frac{8\pi}{\varepsilon - 1}\varepsilon \sigma_z} + a}$$

•Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

 \Rightarrow a=50µm, b=162µm, fused silica, ϵ^{3} , f₁~470GHz

MAX-PLANCK-GESELLSCHAFT P. Muggli, EPS-HEP 07/25/2015

Estimated max. decelerating field: 11GV/m

 \diamond Estimated max. accelerating field: 17GV/m

♦Breakdown field at 13.8±0:7GV/m

 $\begin{bmatrix} a \\ \sqrt{\varepsilon} \\ \varepsilon \\ -1 \end{bmatrix}$

Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

DWA RESULTS

UCLA Acceleration in slab symmetric DWA

PRL 108, 244801 (2012)

PHYSICAL REVIEW LETTERS

week ending 15 JUNE 2012

- Structure: •
 - SiO2, planar geometry, beam gap 240µm
- **BNL ATF** •
 - Flat beam
 - Long bunch structure with two peaks

Current [Amp] 100

50

- Acceleration of trailing peak ٠
- Robust start-to-end simulations for benchmarking 150

Slab geometry allows for: ♦ More charge per bunch \diamond Reduced transverse wakefields ♦ Demonstration of energy gain!

Dielectric Wakefield Acceleration of a Relativistic Electron Beam in a Slab-Symmetric Dielectric Lined Waveguide

G. Andonian,¹ D. Stratakis,¹ M. Babzien,² S. Barber,¹ M. Fedurin,² E. Hemsing,³ K. Kusche,² P. Muggli,⁴ B. O'Shea,¹ X. Wei,¹ O. Williams,¹ V. Yakimenko,² and J. B. Rosenzweig¹

OUTLINE

♦Novel Accelerator Techniques "Goals"

\diamond Intense laser pulse to drive wakefields in plasma

Capillary Discharge Plasma (long, accelerator)

 \diamond Most active field

♦Availability of TW Ti:Sapphire laser systems

- ♦ Few TW for 10-100MeV e⁻ in a few mm
- ♦Acceleration, guiding
- ♦Self-trapping
- ♦Injection (plasma "gun")
- ♦ Diagnostics
- ♦ Radiation source

Peak energy gain 4.2GeV in <10cm
 Self-trapped plasma e⁻

Needed: controlled external injection
 100TW laser pulse with joules (i.e., not too short)

LWFA LASER DEVELOPMENT

International Committee on Ultra-high Intensity Lasers (ICUIL)

 "Our mission is to stimulate, strengthen and expand ultra-intense laser science and related technologies."

- The International Coherent Amplification Network (ICAN)
- "The network is looking into existing fiber laser technology, which we believe has fantastic potential for accelerators"
- "CERN's contribution to the ICAN project is part of a wider strategy to encourage the development of laser acceleration technologies. By supporting ICAN and similar research projects, CERN will be contributing to the R&D of potentially ground-breaking accelerator technologies."

♦ Strong effort to develop high peak power/high average power, short pulse lasers

MAX-PLANCK-GESELLSCHAFT P. Muggli, EPS-HEP 07/25/2015

♦ The future is fiber lasers?

LWFA-BASED COLLIDER CONCEPT

Surfing a plasma wave, a bunch of electrons or positrons can experience much higher accelerating gradients than a conventional RF linac could provide.

← Effort (particularly at LBNL, Cilex) towards an e⁻/e⁺ collider

MAX-PLANCK-GESELLSCHAFT P. Muggli, EPS-HEP 07/25/2015

OUTLINE

♦Novel Accelerator Techniques "Goals"

(mn) x

-50

-100

-200

- Plasma wave/wake excited by a relativistic particle bunch
- Plasma e⁻ expelled by space charge force => deceleration + focusing (MT/m)
- Plasma e⁻ rush back on axis => acceleration, GV/m
- Ultra-relativistic driver => ultra-relativistic wake => no dephasing
- Particle bunches have long "Rayleigh length" (beta function $\beta^* = \sigma^{*2}/\epsilon \sim cm, m$)

PWFA (e⁻)

High-Efficiency Acceleration of an Electron Bunch in a Plasma Wakefield Accelerator

Focus on energy gain, efficiency, optimization of accelerated beam quality
 Measure, repeat/confirm, publish, improve...

Courtesy M.J. Hogan, SLAC

SLAC

A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

Summarized for CSS2013

E. Adli, J.P.Delahaye, S.J.Gessner, M.J. Hogan, T. Raubenheimer (SLAC) W.An, C. Joshi, W.Mori (UCLA)

Figure 1: Layout of a 1 TeV PWFA Linear Collider

~ 4.5 km New concept for a PWFA-LC e+ e-CW option with recirculation Maine-beam (CW) : Main e+ beam (CW) : DR E_{cm} = 1 TeV, L=1.6x10⁵⁴, T=1.0 DR Q=1.0 x 1010e-@ 15 kHz Q=1.0 x 10¹⁰e⁺ @ 15 kHz Absolutely not to scale P_{MB,final} = 12 MW e-source e+source 20 plasma stages, ∆E=25 GeV each stage BDS and final focus, (3.5 km) Magnetic chicanes: 4 ns delay Injection every half turn, Main e+plasma acceleration (0.5 km) Main e-plasma acceleration (0.5 km) C=1000 m, Ploss/PDB = 8% Drive beam after accumulation : 4passes Recirculating SCRF CW linacs Accu-Trains of 20 bunches, 4 ns apart @ 15 kHz mulator Each linac: 3.16GV, 19 MV/m, 250m ring Each arc: 437.5m Drive beam (CW) : ~ 25 m E = 25 GeV. ⇒_{DB} Matching Q=2.0 x 1010e @ 15x40 kHz MB bunch to β*~1cm dump PDB.initial = 2 x 24 MW injection @ 15 kHz Main beam structure e- source Plasma cell <66.7 US $\Delta z_{DBWB} \simeq 187 \text{ um}$ ΔE=25 GeV Drive beam structure out of linac @ injection ~1m <1.67 us DB 20-bunch train 4 ns delay θ~10 mrad Drive beam structure out of acc. ring @ 15 kHz ~0.6m

66.7 US

IAX-PLANCK-GESELLSCHAFT

_gli, EPS-HEP 07/25/2015

à ns

Fast kicker

E at IP, CM	GeV	250	500	1000	3000	6000	10000
N, experimental bunch		1.0E+10	1E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10
Main beam bunches / train		1	1	1	1	1	1
Main beam bunch spacing,	nsec	3.33E+04	5.00E+04	6.67E+04	1.00E+05	1.43E+05	2.00E+05
Repetition rate,	Hz	30000	20000	15000	10000	7000	5000
n exp.bunch/sec,	Hz	30000	20000	15000	10000	7000	5000
Avg current in exp beam	uA	48.06	32.04	24.03	16.02	11.21	8.01
peak current in exp beam	Α	4.81E-05	3.20E-05	2.40E-05	1.60E-05	1.12E-05	8.01E-06
Power in exp. beam	W	6.0E+06	8.0E+06	1.2E+07	2.4E+07	3.4E+07	4.0E+07
Effective accelerating gradient	MV/m	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00
Overall length of each linac	m	125	250	500	1500	3000	5000
BDS (both sides)	km	2.00	2.50	3.50	5.00	6.50	8.00
Overall facility length	km	2.25	3.00	4.50	8.00	12.50	18.00
IP Parameters							
Exp. bunch gamepsX,	m	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
Exp. bunch gamepsY,	m	3.50E-08	3.50E-08	3.50E-08	3.50E-08	3.50E-08	3.50E-08
beta-x,	m	1.10E-02	1.10E-02	1.10E-02	1.10E-02	1.10E-02	1.10E-02
beta-y,	m	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
sigx,	m	6.71E-07	4.74E-07	3.35E-07	1.94E-07	1.37E-07	1.06E-07
sigy,	m	3.78E-09	2.67E-09	1.89E-09	1.09E-09	7.72E-10	5.98E-10
sigz,	m	2.00E-05	2.00E-05	2.00E-05	2.00E-05	2.00E-05	2.00E-05
Υ		8.44E-02	2.39E-01	6.75E-01	3.51E+00	9.93E+00	2.14E+01
Dx		1.03E-02	1.03E-02	1.03E-02	1.03E-02	1.03E-02	1.03E-02
Dy		1.83E+00	1.83E+00	1.83E+00	1.83E+00	1.83E+00	1.83E+00
Uave		0.17	0.48	1.35	7.00	19.79	42.59
delta_B	%	2.75	6.66	12.76	23.10	27.67	29.88
P_Beamstrahlung [W]	W	1.7E+05	5.3E+05	1.5E+06	5.6E+06	9.3E+06	1.2E+07
ngamma		0.57	0.73	0.88	1.05	1.11	1.14
Hdx		1.00	1.00	1.00	1.00	1.00	1.00
Hdy		4.62	4.62	4.62	4.62	4.62	4.62
Hd		1.7	1.7	1.7	1.7	1.7	1.7
Geometric Lum (cm-2 s-1)		9.41E+33	1.25E+34	1.88E+34	3.76E+34	5.27E+34	6.27E+34
Total Luminosity (cm-2 s-1)		1.57E+34	2.09E+34	3.14E+34	6.27E+34	8.78E+34	1.05E+35
Integrated Lum. (fb-1 per 1E7s)		157	209	314	627	878	1045
Lum1%		9.41E+33	1.15E+34	1.57E+34	2.51E+34	3.07E+34	3.14E+34

	E at IP, CM		250	500	1000	3000	6000	10000		
	N, experimental bunch		1.0E+10	1E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10		
E at IP, CM	Ge\	'	250		500	1000	3	3000	6000	10000

♦ Various energy scenarios

E at IP, CM	E at IP, CM			500	1000	0 3000	6000	10000		
N, experimental bunch	N, experimental bunch			1E+10	1.0E+10	0 1.0E+10	1.0E+10	1.0E+10		
E at IP, CM GeV			250	5	00	1000	30	00	6000	10000
Main beam bunch spacing, nsec		3.33	3E+04	5.00E+	·04 (6.67E+04	1.00E+	·05 ´	1.43E+05	2.00E+05
Repetition rate,	Hz	3	30000	200	00	15000	100	00	7000	5000

♦ Various energy scenarios

CW beam rate for plasma "recovery", use SC RF for drive beam linac

	E at IP, CM		GeV	250	500	10	3000	6000	1000	0	
[N, experimental bunch			1.0E+10	1E+10	1.0E+	+10 1.0E+10	1.0E+10	1.0E+1	0	
E at IP, CM		GeV		250		500	1000	3	000	6000	10000
Main beam bunch sp	acing, I	nsec	3.	33E+04	5.00E	+04	6.67E+04	1.00E	+05	1.43E+05	2.00E+05
Repetition rate,		Hz		30000	20	000	15000	10	000	7000	5000
Avg current in exp be	eam	uA		48.06	32	2.04	24.03	1	6.02	11.21	8.01
peak current in exp b	beam	Α	4.	.81E-05	3.20E	-05	2.40E-05	1.60	E-05	1.12E-05	8.01E-06
Power in exp. beam		W	6	6.0E+06	8.0E	+06	1.2E+07	2.4E	+07	3.4E+07	4.0E+07

♦ Various energy scenarios

♦ CW beam rate for plasma "recovery", use SC RF for drive beam linac

♦ Reasonable beam current and power

E at IP, CM	E at IP, CM		250	500	1000 3000		6000 10000		000		
N, experimental bunch			1.0E+10	1E+10	1.0E	+10	1.0E+10	1.0E+10	1.0E+	+10	
E at IP, CM	GeV		250		500	1000		3000		6000	10000
Main beam bunch spacing,	nsec	3.3	3E+04	5.00E	+04	6.6	7E+04	1.00E	E+05	1.43E+05	2.00E+05
Repetition rate,	Hz		30000	20	000		15000	1(0000	7000	5000
Avg current in exp beam	uA		48.06	32	.04		24.03	1	6.02	11.21	8.01
peak current in exp beam	A	4.8	81E-05	3.20E	-05	2.4	40E-05	1.60	E-05	1.12E-05	8.01E-06
Power in exp. beam	W	6.	.0E+06	8.0E	+06	1.	2E+07	2.4E	E+07	3.4E+07	4.0E+07
Effective accelerating gradient	MV/m	1	000.00	1000	00.0	1	000.00	100	0.00	1000.00	1000.00
Overall length of each linac	m		125		250		500		1500	3000	5000
BDS (both sides)	km		2.00	2	2.50		3.50		5.00	6.50	8.00
Overall facility length	km		2.25	3	3.00		4.50		8.00	12.50	18.00

♦ Various energy scenarios

♦ CW beam rate for plasma "recovery", use SC RF for drive beam linac

♦ Reasonable beam current and power

Average gradient ~1GeV/m (~8GeV/m peak), reasonable linac lengths

E	E at IP, CM		GeV	250	500		1000 3000	6000	10000	0	
	I, experimental bunch		1.0E+10		1E+10	1.0E+10 1.0E+10		1.0E+10 1.0E+10		<u> </u>	
E at IP, CM		GeV		250		500	1000	30)00	6000	10000
Main beam bunch spa	acing,	nsec	3.	33E+04	5.00E	+04	6.67E+04	1.00E+	-05	1.43E+05	2.00E+05
Repetition rate,		Hz		30000	20	000	15000	100)00	7000	5000
Avg current in exp be	am	uA		48.06	32	.04	24.03	16	.02	11.21	8.01
peak current in exp be	eam	Α	4.	.81E-05	3.20E	-05	2.40E-05	1.60E	-05	1.12E-05	8.01E-06
Power in exp. beam		W	6.0E+06		8.0E	+06	1.2E+07	2.4E+	-07	3.4E+07	4.0E+07
Effective accelerating	gradient	MV/m		1000.00	1000	00.0	1000.00	1000	.00	1000.00	1000.00
Overall length of each	n linac	m		125		250	500	15	500	3000	5000
BDS (both sides)		km		2.00	2	2.50	3.50	5	.00	6.50	8.00
Overall facility length		km		2.25	3	3.00	4.50	8	.00	12.50	18.00
Geometric Lum (cm-	-2 s-1)		9.4	41E+33	1.25E	+34	1.88E+34	3.76E+	-34	5.27E+34	6.27E+34
Total Luminosity (cr	n-2 s-1)		1.	57E+34	2.09E	+34	3.14E+34	6.27E-	-34	8.78E+34	1.05E+35
Integrated Lum. (fb-	1 per 1E7s)			157		209	314	6	527	878	1045

♦ Various energy scenarios

♦ CW beam rate for plasma "recovery", use SC RF for drive beam linac

♦ Reasonable beam current and power

Average gradient ~1GeV/m (~8GeV/m peak), reasonable linac lengths

♦ Reasonable luminosities

Caldwell, Nat. Phys. 5, 363, (2009)

 \diamond Accelerate an e⁻ bunch on the wakefields of a p⁺ bunch

Single stage, no gradient dilution

♦Gradient ~1 GV/m over 100's m (average!!!)

\diamondOperate at lower n_e (6x10¹⁴cm⁻³), larger (λ_{pe})³, easier life ...

↔SPS beam: high energy, small σ_r^* , long $β^*$ ↔Initial goal: ~GeV gain by externally injected e⁻,in

5-10m of plasma in self-modulated p⁺ driven PWFA

Setup a comprehensive PWFA program at CERN

p⁺-DRIVEN PWFA FOR e⁻/p⁺ COLLIDER

 Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.

- · Overall layout works in powerpoint.
- Need high gradient magnets to bend protons into the LHC ring.
- One proton beam used for electron acceleration to then collider with other proton beam.
- High energies achievable and can vary electron beam energy.
- · What about luminosity ?

- Assume
 - ~3000 bunches every 30 mins, gives f ~ 2 Hz.
 - $N_p \sim 4 \times 10^{11}$, $N_e \sim 1 \times 10^{11}$
 - $\sigma \sim 4 \ \mu m$

simulation of existing LHC bunch in plasma with trailing electrons ...

A. Caldwell, K. V. Lotov, Phys. Plasmas **18**, 13101 (2011)

OUTLINE

♦Novel Accelerator Techniques "Goals"

♦Summary

Number of possible novel techniques: dielectrics/plasmas, laser/particle beams

♦All have demonstrated accelerating gradients large than 700MeV/m!!! Novel!!!

Very large gradients reached (>100GV/m)

Very large energy gains achieved (>4GeV in ~10cm LWFA, >40GeV in 85cm PWFA)

Witness bunch acceleration, transfer efficiency (30% bunch to bunch) demonstrated (PWFA)

 \diamond Next milestones: high quality acceleration (Δ E/E, ε small), staging/long accelerator

•Complex experiments for small groups

Concepts for "collider-like" accelerators exist for 1GeV/m (average gradient, all)

♦No <u>physics</u> roadblocks/show stoppers

♦Number of technical challenges towards collider beams: a priori solvable

"Large scale" experiments: FACET, DESY Flash Forward, INFN SPARC_LAB, CERN AWAKE, BELLA, CILEX, ELI, etc.

Strengthen collaboration between lab/university groups

•"The next collider will not be built by faculties at universities"

Efficiency, reproducibility, stability, reliability, etc.

♦ Field mature for accelerator laboratories to adopt a concept and take it to the limit ...

Thank you to my collaborators!

Thank you!

http://www.mpp.mpg.de/~muggli muggli@mpp.mpg.de

Thank you to P. Hommelhoff, J. England, M. Hogan, G. Andonian, A. Caldwell for material