
Software &
Computing
at CRAYFIS

Chase Shimmin
University of California, Irvine

arXiv:1410.2895

2

http://arxiv.org/abs/1410.2895

Whiteson
Shimmin
Strong
Brodie
Goddard
Porter
Sandy

Mulhearn
Burns
Buonacarsi

Cranmer

Ustyuzhanin
+2 masters st.

Deng

3

Smartphones are:
Particle Detectors

Camera Sensor =

(tin
y)

(Active area: ~0.3 cm2)

4

Smartphones are:
Mobile Laboratories

GPS Wi-Fi

5

Shower Reconstruction

Auger: highly
sensitive detectors

w/ picosecond timing

(State of the Art)

6

hit
nohit

Shower Reconstruction
t∈[0.0 - 0.2s]

(w/ CRAYFIS)

7

Tremendous densities
near shower core

Particle Content

E0 =1019 - 1020 eV

8

During a shower event, the expected
number of particle hits is:

— active area
— detection eff.
— LDF [particles/m2]
— noise term

Probability of seeing nothing:

Likelihood function, given phones that
were / weren’t hit:

no hit hit

Likelihood

9

Keeping up with Auger

Auger
observing power

~800k smartphones!10

The App: Internals

part
icl

es

CMOS sensor

any
pixel

above
threshold?

320x240p video
~20fps

L1 trigger

sparse array
of pixels

L2 processor

serialize to
protobuf

HTTP
upload

Phone

“the cloud”

Scan video for bright pixels.
Upload any hits to our server.

Basic Idea:

11

Data Challenges
Online/DAQ:

• Acquire data from many
endpoints all over the world

• Robustly store data to
persistent site

• Aggregate and process
analytics in realtime

Offline/Analysis:

• Generate/index calibration
for 1M+ unique sensors

• Cluster events in space
+time

• Convolve array with
shower MC to determine
acceptance

12

Online Computing
(DAQ)

13

Online Computing

• Phones generate datablocks every ~3-5 min

• Each one needs to be received, saved, and
processed by us!

(1M phones) x (3-5 min)-1 ~ 3-6 kHz
CRAYFIS DAQ load:

Google searches:
40 kHz

Reddit pageviews:
<100 Hz

14

Python web app

• receive data, place
on queue

Persistent storage
(S3, rsync)

queue

Python worker scripts

• pull items from queue

• process on-the-fly stats

Statistics database

raw data

processe
d data

Online Backend
(simplified)

15

Device
Data

HTTP
application/octet-stream

(protobuf)

application/json

django

DAQ
(data acquisition)

server(s)

Web server(s)

static pages

interactive user
content

science
monitoring

Web
Browser

HTML, etc

HDD

Queue (redis/kafka)

To
 Irv

ine

(rs
ync)

Cache (redis/elastic)

crayon

DB (postgres)
crayfis online

(python)

user/device stats

pixel analysis

plots/graphs

raw data processed data SQL query

Online Backend
(reality)

16

Online Frontend
Website: http://crayfis.io

• Stats and maps

• Plots from each device

• All updated in realtime

17

http://crayfis.io

Offline Computing
(analysis)

18

Offline Computing: Calibration
• Challenge: need to characterize 1M+ phones

• Hot cell removal

• Backgrounds (intrinsic + extrinsic)

• Sensitivity to shower particles 

• Approach:

• Streaming processing whenever possible

• Save + index device metadata with
elasticsearch

• Can also index phones based on
activity / location

Sensor activity

Sensor response

19

Pixel cleaning:

20

Offline Computing:
Array Exposure

Exposure function:
(Detection efficiency) x (array coverage)

LHC:Luminosity :: UHECRs:Exposure

Rare events!

Auger efficiency: ~100% (above 1018 eV)
Auger size: 3x103 km2

But: can’t get better or bigger!

21

Basic approach:

• Simulate detector response to many showers vs. energy, angle, etc.

• Multiply by size of array

Challenge: Need instantaneous acceptance

• Unlike Auger, our array changes constantly!

• Intrinsically global calculation

• Must be able to cluster all events in space + time

Offline Computing:
Array Exposure

Offline Computing:
Array Acceptance

t∈[0.0 - 0.2s] t∈[0.1 - 0.3s]

hit
nohit

Different detector array every instant!

Devices

22

Offline Computing
• Major hurdles:

• Limited/unpredictable resource availability

• Expensive, long computations

• Stream-process when possible

• Solution: Apache Spark + cassandra

• functional map-reduce driver

• runs on anything, integration w/ Hadoop + Cassandra

• operates in both streaming + batch mode

23

+

24

Infrastructure Overview

Next Steps
✓ Online processing: pretty much done!

➡ Working w/ volunteers to create new features  
(plots, interactive items, etc)

✦ Offline processing: new territory

• Developing cleaning/calibration algorithms

• Implementing spark+Cassandra stack

• Locating cluster resources and/or grant $$$

✦ Full-scale release:

• 80k+ emails on our beta invite list!

• Pending calibration, iOS/android development
25

µ+ µ+ µ+

Thank you!

backup

27

Auger = 3x103 km2
Earth = 5x108 km2

Pierre Auger Observatory

28

Pierre Auger Observatory
(F

lu
x)

Energy [eV]29

Photon Sensitivity

No source Ra226

Ev
en

t R
at

e

Time
30

Sources w/ varying
activity, energy:

Ra226: ~180-600 keV
Cs137: 700 keV
Co60: 1.1/1.3 MeV

Photon Sensitivity

31

Get them for free from the sky!
1 muon/cm2/min 1 muon every 4 mins

MIP track w/ over 125 pixel hits!

Muon Sensitivity

32

Muon Sensitivity

— Underground?

TODO!

33

Probability of Hit

Distance from shower core [m]
-500 -400 -300 -200 -100 0 100 200 300 400 500

P(
hi

t)
pe

r p
ho

ne

-510

-410

-310

-210

-110

1

2) mµ), 1e-05(γ = 1e-09(εA

E = 1.97e+18 eV

E = 4.38e+18 eV

E = 9.74e+18 eV

E = 2.17e+19 eV

E = 4.83e+19 eV

E = 1.07e+20 eV

E = 2.39e+20 eV

2) mµ), 1e-05(γ = 1e-09(εA

34

Technologies

Pros

• Allows us to scale rapidly
according to demand

• Easy to obtain world-wide
service coverage

• No capital/up-front costs (pay-
as-you-go)

• Possible to pay for “reserved”
instances to reduce costs

Cons

• Vendor lock-in can be extreme

• Steep learning curve

AWS / EC2 / ECS

35

Technologies

Pros

• Surprisingly easy to use

• Simplifies development
environment

• Deployment: everything “just
works”

• Immutable instance state
makes for clean application
design

Cons

• Not yet widely adopted

• Significant changes between
versions

• Many awesome features are
“beta”

• Integrating multiple containers
can be challenging

Docker

36

Technologies

Pros

• Fast & battle tested

• Trivially easy to use

• Multiple functions
• distributed store
• messaging queue
• pub/sub

Cons

• Data must fit in memory

• Cluster support: nacent

• Schemas can become very
messy

• Not good for queries/multi-
indexing/relational data

Redis

37

Technologies

Pros

• Stores & indexes anything

• Extremely powerful query
system

• Great for live analytics

• Support for scripting

• Designed for clusters

Cons

• Fairly new technology

• Unclear how well it can
scale

• Query DSL is awkward (but
powerful!)

Elasticsearch

38

