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Smartphones are: 
Particle Detectors

Camera Sensor =

(tin
y)

(Active area: ~0.3 cm2)
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Smartphones are: 
Mobile Laboratories

GPS Wi-Fi
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Shower Reconstruction

Auger: highly 
sensitive detectors 

w/ picosecond timing

(State of the Art)
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hit
nohit

Shower Reconstruction
t∈[0.0 - 0.2s]

(w/ CRAYFIS)
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Tremendous densities 
near shower core

Particle Content

E0 =1019 - 1020 eV
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During a shower event, the expected 
number of particle hits is:

—  active area
—  detection eff.
—  LDF [particles/m2]
—  noise term

Probability of seeing nothing:

Likelihood function, given phones that 
were / weren’t hit:

no hit hit

Likelihood
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Keeping up with Auger

Auger 
observing power

~800k smartphones!10



The App: Internals

part
icl

es

CMOS sensor

any
pixel

above
threshold?

320x240p video
~20fps

L1 trigger

sparse array
of pixels

L2 processor

serialize to
protobuf

HTTP
upload

Phone

“the cloud”

Scan video for bright pixels. 
Upload any hits to our server.

Basic Idea:
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Data Challenges
Online/DAQ:

• Acquire data from many 
endpoints all over the world 

• Robustly store data to 
persistent site 

• Aggregate and process 
analytics in realtime

Offline/Analysis:

• Generate/index calibration 
for 1M+ unique sensors 

• Cluster events in space
+time 

• Convolve array with 
shower MC to determine 
acceptance
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Online Computing
(DAQ)
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Online Computing

• Phones generate datablocks every ~3-5 min 

• Each one needs to be received, saved, and 
processed by us!

(1M phones) x (3-5 min)-1 ~ 3-6 kHz
CRAYFIS DAQ load:

Google searches: 
40 kHz

Reddit pageviews: 
<100 Hz
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Python web app

• receive data, place 
on queue

Persistent storage 
(S3, rsync)

queue

Python worker scripts

• pull items from queue 

• process on-the-fly stats

Statistics database

raw data

processe
d data

Online Backend
(simplified)
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Device 
Data

HTTP
application/octet-stream 

(protobuf)

application/json

django

DAQ
(data acquisition) 

server(s)

Web server(s) 

static pages

interactive user 
content

science 
monitoring

Web 
Browser

HTML, etc

HDD

Queue (redis/kafka)

To
 Irv

ine

(rs
ync)

Cache (redis/elastic)

crayon

DB (postgres)
crayfis online

(python)

user/device stats

pixel analysis

plots/graphs

raw data processed data SQL query

Online Backend
(reality)
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Online Frontend
Website: http://crayfis.io 

• Stats and maps 

• Plots from each device 

• All updated in realtime
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Offline Computing
(analysis)
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Offline Computing: Calibration
• Challenge: need to characterize 1M+ phones 

• Hot cell removal 

• Backgrounds (intrinsic + extrinsic) 

• Sensitivity to shower particles 

• Approach: 

• Streaming processing whenever possible 

• Save + index device metadata with 
elasticsearch

• Can also index phones based on 
activity / location

Sensor activity

Sensor response

19

Pixel cleaning:



20

Offline Computing: 
Array Exposure

Exposure function:
(Detection efficiency) x (array coverage)

LHC:Luminosity :: UHECRs:Exposure

Rare events!

Auger efficiency: ~100% (above 1018 eV) 
Auger size: 3x103 km2

But: can’t get better or bigger!
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Basic approach:

• Simulate detector response to many showers vs. energy, angle, etc. 

• Multiply by size of array 

Challenge: Need instantaneous acceptance 

• Unlike Auger, our array changes constantly! 

• Intrinsically global calculation 

• Must be able to cluster all events in space + time

Offline Computing: 
Array Exposure



Offline Computing: 
Array Acceptance

t∈[0.0 - 0.2s] t∈[0.1 - 0.3s]

hit
nohit

Different detector array every instant!

Devices
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Offline Computing
• Major hurdles: 

• Limited/unpredictable resource availability 

• Expensive, long computations 

• Stream-process when possible 

• Solution: Apache Spark + cassandra

• functional map-reduce driver 

• runs on anything, integration w/ Hadoop + Cassandra 

• operates in both streaming + batch mode
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Infrastructure Overview



Next Steps
✓ Online processing: pretty much done! 

➡ Working w/ volunteers to create new features  
(plots, interactive items, etc) 

✦ Offline processing: new territory 

• Developing cleaning/calibration algorithms 

• Implementing spark+Cassandra stack 

• Locating cluster resources and/or grant $$$

✦ Full-scale release: 

• 80k+ emails on our beta invite list! 

• Pending calibration, iOS/android development
25
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Thank you!



backup

27



Auger = 3x103 km2
Earth = 5x108 km2

Pierre Auger Observatory
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Pierre Auger Observatory
(F
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Energy [eV]29



Photon Sensitivity

No source Ra226
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e
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Sources w/ varying 
activity, energy:

Ra226: ~180-600 keV
Cs137:      700 keV
Co60:   1.1/1.3 MeV

Photon Sensitivity
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Get them for free from the sky!
1 muon/cm2/min 1 muon every 4 mins

MIP track w/ over 125 pixel hits!

Muon Sensitivity
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Muon Sensitivity

— Underground?

TODO!
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Probability of Hit

Distance from shower core [m]
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Technologies

Pros

• Allows us to scale rapidly 
according to demand 

• Easy to obtain world-wide 
service coverage 

• No capital/up-front costs (pay-
as-you-go) 

• Possible to pay for “reserved” 
instances to reduce costs

Cons

• Vendor lock-in can be extreme 

• Steep learning curve

AWS / EC2 / ECS
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Technologies

Pros

• Surprisingly easy to use 

• Simplifies development 
environment 

• Deployment: everything “just 
works” 

• Immutable instance state 
makes for clean application 
design

Cons

• Not yet widely adopted 

• Significant changes between 
versions 

• Many awesome features are 
“beta” 

• Integrating multiple containers 
can be challenging

Docker
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Technologies

Pros

• Fast & battle tested 

• Trivially easy to use 

• Multiple functions 
• distributed store 
• messaging queue 
• pub/sub

Cons

• Data must fit in memory 

• Cluster support: nacent 

• Schemas can become very 
messy 

• Not good for queries/multi-
indexing/relational data

Redis
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Technologies

Pros

• Stores & indexes anything 

• Extremely powerful query 
system 

• Great for live analytics 

• Support for scripting 

• Designed for clusters

Cons

• Fairly new technology 

• Unclear how well it can 
scale 

• Query DSL is awkward (but 
powerful!)

Elasticsearch
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