TELE script

R. Martin

Final Focus meeting
October 22, 2014

TELE script

- Code to automatically produce 4 lens telescopes with given magnification
- used in FFADA program
- rewritten from FORTRAN to Python
- based on calculations for 3 thin lenses \rightarrow requires:
- first drift length (e.g. L^{*})
- last drift length (little to no impact on result when kept short)
- first quadrupole (roughly defined by L^{*} and maximum gradient)
- \Rightarrow ideal for FFS design

4 Lens System

$$
M_{t o t}=D_{4} \cdot Q_{4} \cdot D_{3} \cdot Q_{3} \cdot D_{2} \cdot Q_{2} \cdot D_{1} \cdot Q_{1} \cdot D^{*}
$$

L^{*} is given, first guess for Q_{1} is defined by L^{*} and max. gradient, D_{4} chosen freely (result depends only weakly on D_{4}), $M_{\text {tot }}$ defined by magnification

$$
\Rightarrow D_{4}^{-1} M_{t o t} D^{*-1} Q_{1}^{-1}=Q_{4} \cdot D_{3} \cdot Q_{3} \cdot D_{2} \cdot Q_{2} \cdot D_{1}=M_{3} \text { lens }
$$

\rightarrow reduced 4 lens system to 3 lens system

3 thin lenses

$$
\begin{equation*}
Q_{3} \cdot D_{3} \cdot Q_{2} \cdot D_{2} \cdot Q_{1} \cdot D_{1}=M_{3} \text { lens } \text { in } x \text { and } y \tag{1}
\end{equation*}
$$

$\rightarrow 8$ nonlinear equations to solve (numerically expensive) with many unphysical solutions (e.g. negative drifts)
\rightarrow using iterative methode by Y-C Chao (1992) instead

Iterative methode

Step 1:

$$
\begin{gather*}
Q_{2} \cdot D_{2}=M^{1} \tag{2}\\
\Rightarrow\left[\begin{array}{cc}
1 & L_{2} \\
K_{2} & 1+K_{2} L_{2}
\end{array}\right]=M^{1} \\
\Rightarrow L_{2}=M_{1,2}^{1} \\
\Rightarrow\left[\begin{array}{cc}
K_{2}=M_{2,1}^{1} \\
M_{2,1}^{1} & 1+M_{1,2}^{1} M_{2,1}^{1}
\end{array}\right]=M^{1} \tag{3}
\end{gather*}
$$

Step 2:

$$
\begin{equation*}
M^{1}=Q_{2} \cdot D_{2}=D_{3}^{-1} M^{2} Q_{1}^{-1} \tag{4}
\end{equation*}
$$

Using Eq. 3 we get expressions for $L_{3}, K_{1}, L_{2}, K_{2}$ as functions of matrix M^{2}

Iterative methode

Step 3:

$$
\begin{equation*}
M^{2}=D_{3} \cdot Q_{2} \cdot D_{2} \cdot Q_{1}=Q_{3}^{-1} M^{3} D_{1}^{-1} \tag{5}
\end{equation*}
$$

similar to Step 2 just with larger equations
"The algebra involved in this step is too massive to be reproduced here."

Y-C Chao

Iterative methode

Reference

1. O. Napoly, Thin lens telescopes for final focus systems, CERN/LEP-TH/89-69, CLIC Note 102.

APPENDIX A EXPLICTT FORMS OF X, Y, AND Z IN EQ. (3.18)

By careful manipulation of Eq. (1.2), taking advantage of the simplified forms for the sum and difference of its \approx-part and y-part, one arrives at two independent and relatively simple equations for t_{1} and K_{3} as follow:
$\left[\mathrm{a}^{2}-2(\bar{a}-1) a\right] \tilde{K}_{3} \tilde{L}_{1}+(a-1) \dot{\vec{B}} \dot{K}_{3}+(a-1) \dot{C} \tilde{L}_{1}+\mathrm{g}(\bar{a}-1)^{2}=0$,

$$
\left[(\bar{\sigma}-1) \bar{\sigma}^{2}-\underline{\Omega}^{2}\right] \hat{R}_{3} L_{1}-(\bar{\sigma}-1) \hat{\sigma} B \hat{R}_{3}
$$

$$
-(\bar{a}-1) a \dot{c} \tilde{L}_{1}+\left[(\bar{a}-1) \dot{C} \dot{b}-a^{3}(a-1)\right]=0
$$

where

Elimination of say, K_{3} in Eq. (A.1) thus leads to the following equation:

$$
\begin{equation*}
A_{1} \bar{L}_{1}^{2}+B_{1} \bar{L}_{1}+C_{1}=0, \tag{A,2}
\end{equation*}
$$

$$
\begin{aligned}
& \overline{K_{8}}=\underline{a} K_{s}-\bar{c}, \quad \overline{L_{1}}=\Omega L_{1}-\underline{\varepsilon} \\
& \vec{B}=(\underline{a} b-\bar{a} b), \quad C=(a c t-\bar{a}), \\
& \overline{\mathrm{a}}=\frac{M_{z 11}+M_{p 11}}{2}, \quad \mathrm{q}=\frac{M_{\mathrm{zn}}-M_{\mathrm{pl1}}}{2} \text {, } \\
& \bar{b}=\frac{M_{z i 2}+M_{y 12}}{2}, \quad \mathrm{~b}=\frac{M_{z 12}-M_{y 12}}{2} \text {, } \\
& \varepsilon=\frac{M_{z n}+M_{p t}}{2}, \quad \varepsilon=\frac{M_{x n 1}-M_{n 2 t}}{2} \text {. }
\end{aligned}
$$

where
$A_{1}=(\bar{a}-1)(\bar{a}-\underline{a})(\bar{a}+\underline{q}) \dot{C}$,
$s_{1}=-\left(2 a^{2}-2 a-a^{2}\right) \dot{B} \dot{C}-a\left(a^{4}-2 a^{2}-2 a^{2} a^{2}+a^{2}+a^{2} a+a^{4}+a^{5}\right)$.
$a_{1}=(\bar{a}-1) \dot{B}\left(B C+\underline{a} \bar{a}^{a}-\underline{a} \bar{a}-\underline{a}^{3}\right)$

- The above expression is really more symmetric in the matrix elements if one uses the explicit forms of g and a:
$A=\frac{C M_{e u} M_{2 u}\left(M_{2} u+M_{21}-2\right)}{}$.
$B_{1}=\frac{-A C\left(M_{21}^{2}+6 M_{213} M_{211}-4 M_{2+1}+M_{21}^{2}-4 M_{211}\right)}{4}$

$\left.-4 M_{p 11}^{2}+7 M_{21}^{2} M_{p 11}+M_{21}^{2}-4 M_{21}^{2}\right)$,
$C_{1}=\frac{-\dot{B}\left(M_{y 11}+M_{211}-2\right)\left(2 M_{211} M_{111}^{2}-M_{21}^{2}-2 M_{21}^{2} M_{211}+M_{211}^{2}-4 \dot{B} C\right)}{8}$
Finally x, r, and z in equatiun Eq. (3.18) are given by

$$
X=2 A_{i}, \quad Y=-B_{i}, \quad \text { and } \quad Z=B_{l}^{2}-4 A_{1} C_{l} . \quad \text { (A.S) }
$$

The complexity of Eqs. (A.2) and (3.19) does not pose any problem in terms of coding into a FORTRAN program and maintaining high degrees of accuracy and efficiency.

Iterative methode

Eq. (3.18) into equations obtained at earlier stages of the iteration with fewer elements:

$$
\begin{gather*}
K_{3}=-\frac{-2+M_{w 22}+M_{v 22}-M_{* 21} L_{1}-M_{v 21} I_{1}}{-M_{z 12}+M_{v 12}+M_{x 11} L_{1}-M_{y 11} L_{1}} \\
K_{1}=\frac{K_{1 p}}{D}, \quad K_{2}=\frac{K_{2 D}}{D} \\
L_{2}=\frac{L_{j 2}}{D}, \quad L_{3}=\frac{L_{3 D}}{D} \tag{3.19}
\end{gather*}
$$

where

$$
\begin{aligned}
L_{2 D}= & -\left(M_{y 12}-M_{y 11} L_{1}\right)\left(M_{x 22}-M_{x 12} K_{3}-\left(M_{x 21}-M_{x 11} K_{3}\right) L_{1}\right)+ \\
& \left(M_{x 12}-M_{x 11} L_{1}\right)\left(M_{y 22}+M_{y 12} K_{3}-\left(M_{y 21}+M_{y 11} K_{3}\right) L_{1}\right),
\end{aligned}
$$

$K_{2 D}=\left(M_{y 21}+M_{y 11} K_{3}\right)\left(M_{z 22}-M_{z 12} K_{3}-\left(M_{x 21}-M_{x 11} K_{3}\right) L_{1}\right)$ $+\left(M_{x 21}-M_{x 11} K_{3}\right)\left(M_{y 22}+M_{y 12} K_{3}-\left(M_{y 21}+M_{y 11} K_{3}\right) L_{1}\right)$,

$$
\begin{gathered}
L_{3 D}=-M_{* 12}+M_{y 12}+M_{x 11} L_{1}-M_{y 11} L_{1} \\
D=- \\
-M_{e 22}+M_{y 22}+M_{z 12} K_{3}+M_{y 12} K_{3}+M_{* 21} L_{1}- \\
M_{y 21} L_{1}-M_{z 11} K_{3} L_{1}-M_{y 11} K_{3} L_{1}
\end{gathered}
$$

Iterative methode

- no simple criterion to ensure physical solutions
- no proof the results are always real numbers
- explicit solution \rightarrow fast numerical calculation

Finding physical solutions

- physical solution (i.e. positive drift lengths) not guaranteed \rightarrow introduction of Figure Of Merit

$$
F O M=\frac{1}{\sum_{i} L_{i} \cdot \Sigma_{j} K_{j}}
$$

- maximizing FOM = best balance between overall length and integrated Quadrupole strength (chromaticity)
- TELE increases/decreases length of first quadrupole (without changing gradient) till a local maximum of the FOM is found
- physical solution still not guaranteed but more likely
- optimum solution also not guaranteed due to search for local maximum

Literature

- O. Napoly, B. Dunham, 'FFADA, Computer Design of Final Focus Systems for Linear Colliders', EPAC94, London, England, June 1994, p. 698
- Y-C Chao, J. Irwin, 'Solution of a Three-Thin-Lens System', SLAC-PUB-5834 (1992)
- B. Zotter, 'Design Considerations for a Chromatically Corrected Final Focus System for TeV Colliders', CLIC-Note-64 (1988)
- O. Napoly, 'Thin Lens Telescopes for Final Focus Systems', CLIC Note 102 (1989)

