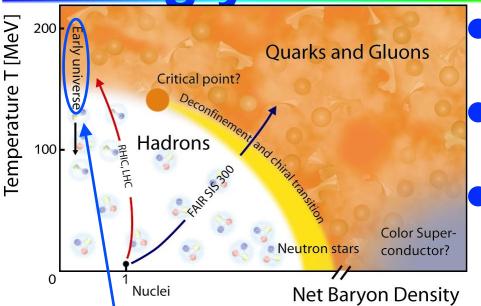
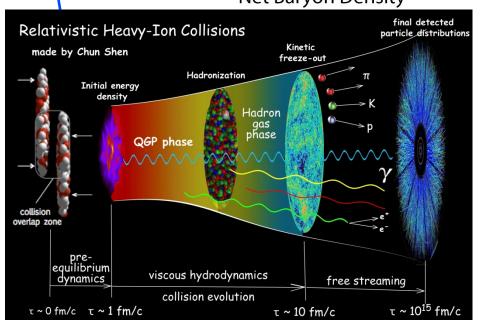
Open heavy-flavor measurements

an overview

Ralf Averbeck


ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

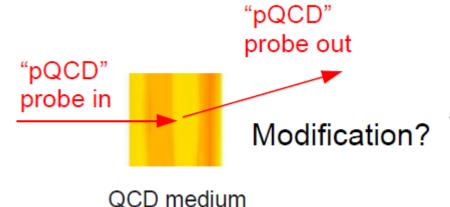


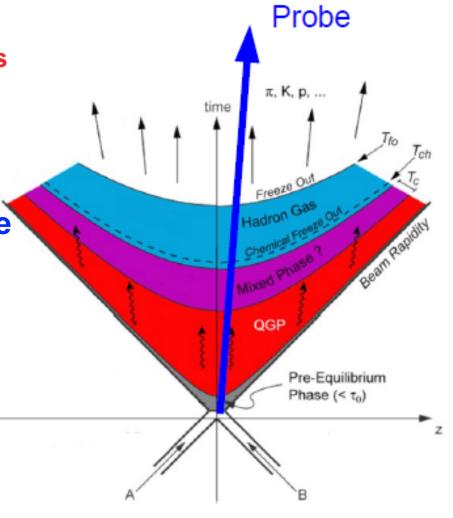
2nd Heavy-Flavor Meeting Saha Institute of Nuclear Physics, Kolkata, India February 3-5, 2016 Strongly interacting matter

- QuantumChromoDynamics: theory of strong interactions
- phase diagram of strongly interacting matter
- deconfined QCD matter at high temperature T and/or baryochemical potential μ_B

heavy-ion collisions at ultra-relativistic energy

only experimental tool to study hot and dense QCD matter in the lab!


Hard probes of QCD matter


 hard (large Q²) probes of QCD matter

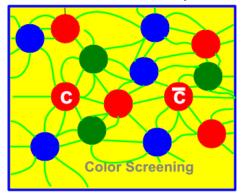
photons, W, Z, jets, heavy quarks

 self generated in the collision at t ~ 1/Q (or t ~ 1/m)


 "tomographic" probes of the hottest and densest phase of the collision

Heavy flavor: a unique probe

- heavy quarks: charm (m_c ~ 1.5 GeV), beauty (m_b ~ 5 GeV)
- $m_{c,b} >> \Lambda_{QCD}$ • heavy quarks = genuine hard probes, even at low p_T
- large mass \rightarrow short formation time: $\tau_{c,b} \sim 1/2m_{c,b} \sim 0.1 \text{ fm} \leq \tau^{\text{therm}} \text{ (QGP)} << \tau^{\text{life}} \text{(QGP)} \sim 5-10 \text{ fm}$


heavy quarks are unique

- interactions with produced QCD medium don't change the flavor but can modify the phase-space distribution of heavy quarks
- thermal production rate in the QGP is "small" (may be measurable → T)
- → destruction or creation in the medium is difficult
- → transported through the whole evolution of the system

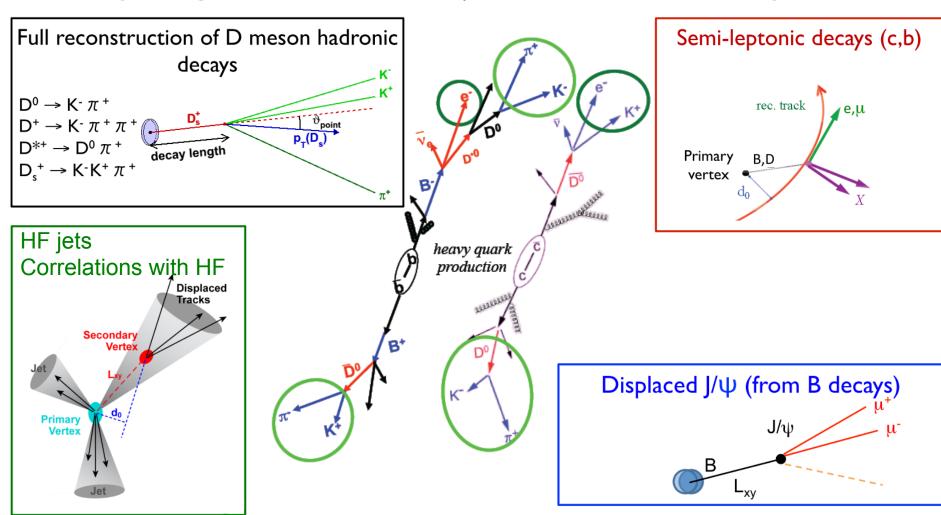
Two "historical" pillars

- dissociation of qq
 via color screening
 - Matsui and Satz, 1986

 probe of deconfinement and medium temperature

Quarkonia

- mass dependence of radiative parton energy loss ("dead cone")
 - Dokshitzer and Kharzeev, 2001
 - → energy loss decreases with increasing quark mass m_a

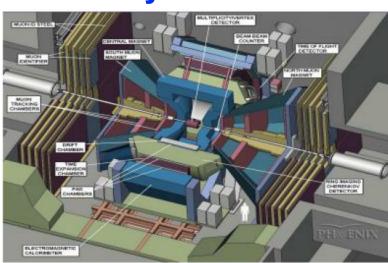

 probe of QCD interaction dynamics in extended systems

Open heavy flavor

both pillars: evolved and extended significantly over the years

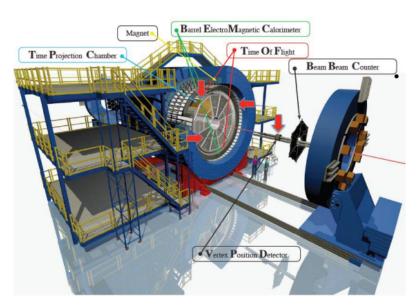
Open heavy-flavor measurements

heavy-flavor hadron decays via weak interaction:
 decay lengths cτ ~ few 100 μm → measure decay products



Experiments at RHIC ...

• pp, d-Au, Cu-Cu, Au-Au, U-U collisions at √s_{NN} ≤ 0.2 TeV


since 2000: first systematic open heavy-flavor studies

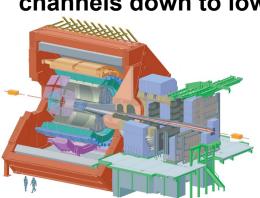
in heavy-ion collisions

PHENIX

heavy flavor via
 e[±] at mid rapidity and
 μ[±] at forward rapidity

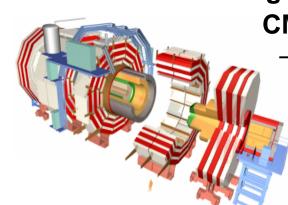
STAR

heavy flavor via
 D-meson reconstruction
 and e[±] at mid rapidity

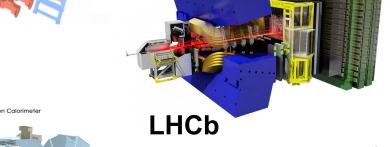

high resolution silicon vertex trackers only after upgrades (first comprehensive results presented in 2015)

... and at the LHC

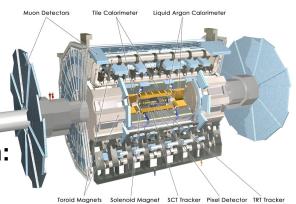
- LHC: pp ($\sqrt{s} \le 13$ TeV), p-Pb ($\sqrt{s}_{NN} = 5.02$ TeV), and Pb-Pb ($\sqrt{s}_{NN} = 2.76$ and 5.02 TeV) collisions
 - all experiments: precision vertex tracking from Day-1


ALICE

 general purpose: all HF channels down to low p_T

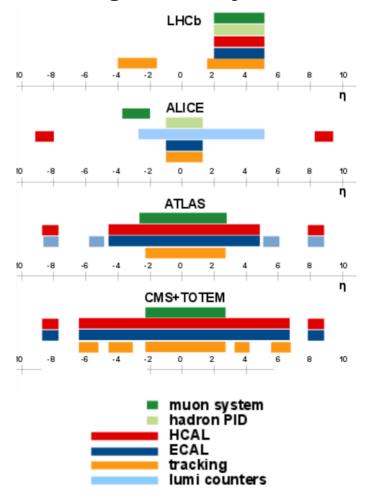

ATLAS

targeted AA program:HF → leptons



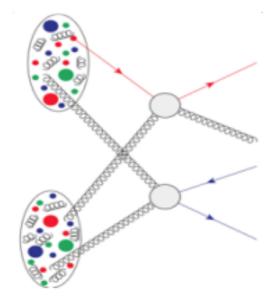
CMS

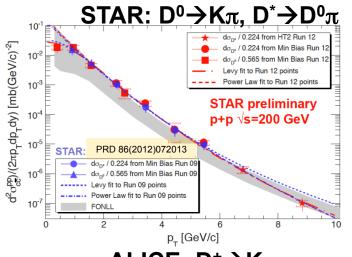
targeted AA program:
 HF jets, non-prompt J/ψ,
 D mesons (w/o PID)

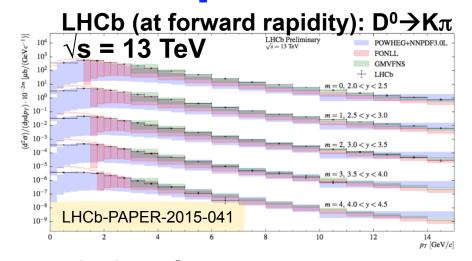

- B physics in pp & p-Pb collisions
- Pb-Pb program started
- fixed target AA programm

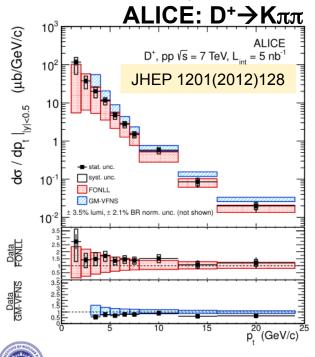
and at the LHC

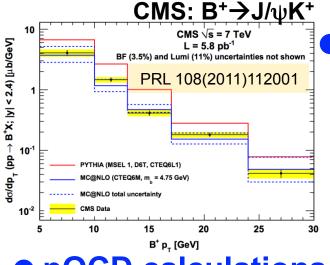
- LHC: pp (\sqrt{s} ≤ 13 TeV), p-Pb (\sqrt{s}_{NN} = 5.02 TeV), and Pb-Pb ($\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV) collisions
 - all experiments: precision vertex tracking from Day-1
 - complementary in terms of phase-space coverage
 - hadron PID only with **ALICE** (mid rapidity) and LHCb (forward rapidity)
 - muons and jets (with HCAL **ECAL**) at mid rapidity only with ATLAS and CMS



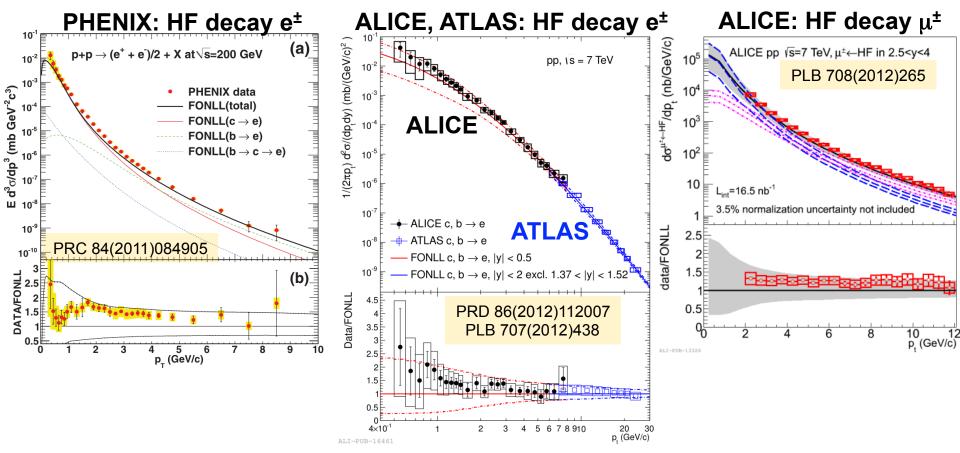

Testing pQCD calculations in pp collisions


Heavy quarks in pp collisions


- test understanding of heavy-quark production
 - which are the relevant production mechanisms on the parton level
 - LO contributions:
 gluon fusion, quark-antiquark annihilation
 - NLO contributions: gluon splitting, flavor excitation
 - or even more complex,e.g. Multi Parton Interactions (MPI)
 - testing ground for perturbative QCD calculations
 - theoretical uncertainties are driven by
 - renormalization and factorization scales
 - quark masses
 - investigate production mechanisms via more differential measurements
 - multiplicity dependence of heavy-flavor production cross sections
 - D meson hadron correlation measurements
 - reference for p-Pb and Pb-Pb collisions

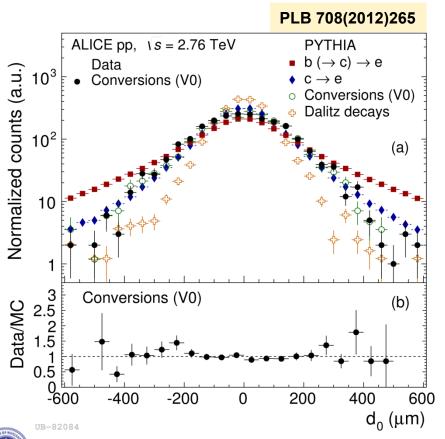


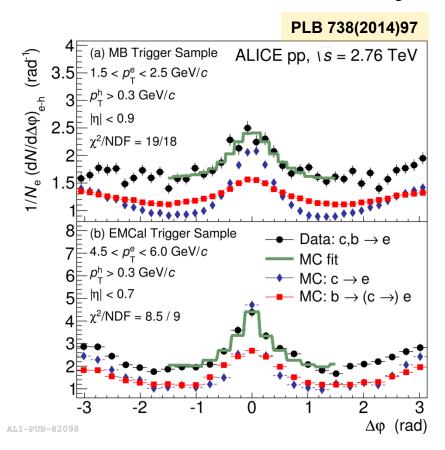
Heavy-flavor hadron production



pQCD calculations

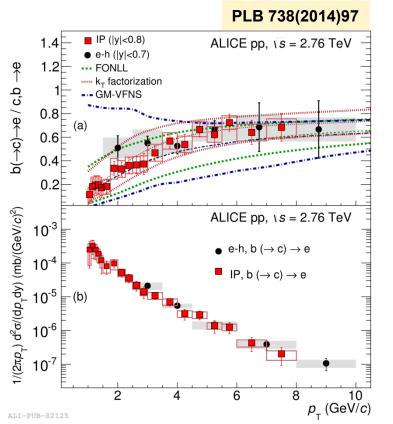
- FONLL: JHEP 1210(2012)37
- GM-VFNS: EPJ C72(2012)2082
- k_T factorization: PRD 87(2013)094022
- pQCD calculations in agreement with measurements within substantial exp. and theor. uncertainties

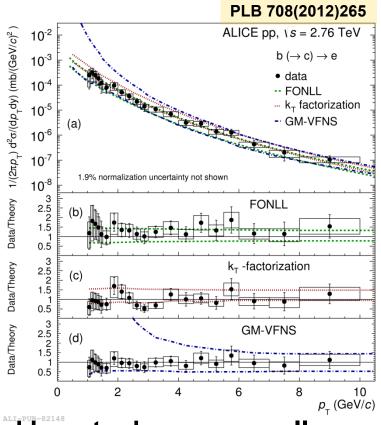

Leptons from heavy-flavor decays



- e[±] (μ[±]) from HF decays at mid (forward) rapidity
- pQCD calculations in reasonable agreement with data within uncertainties

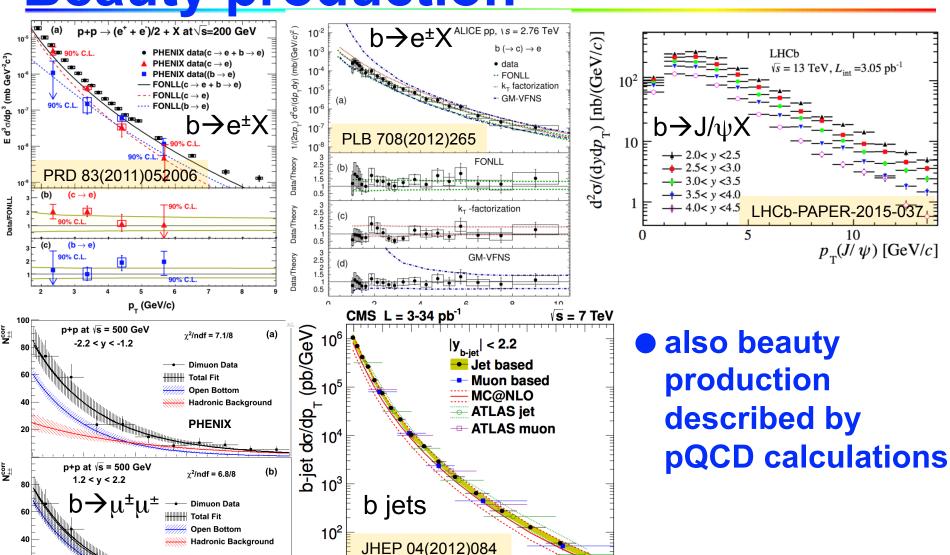
Electrons from beauty decays


- statistical separation of e[±] from charm and beauty decays
 - beauty hadrons: cτ ~ 500 μm → displaced secondary vertex
 - near-side peak in electron-hadron angular correlation wider for electrons from beauty decays than for those from charm decays



Electrons from beauty decays

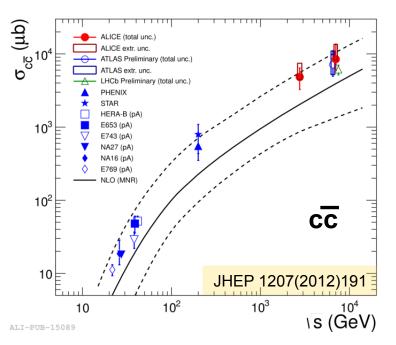
• differential cross sections in pp collisions at \sqrt{s} = 2.76 TeV

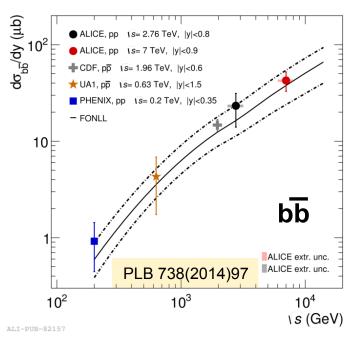


- relative contributions of charm and beauty decays as well as beauty-decay electron cross section reproduced by pQCD calculations (also at $\sqrt{s} = 7 \text{ TeV}$)
 - FONLL: JHEP 1210(2012)37
 - GM-VFNS: EPJ C72(2012)2082
 - $k_{\rm T}$ factorization: PRD 87(2013)094022

Beauty production

PHENIX

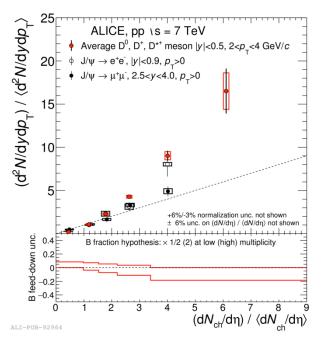

 $m_{\mu\mu}$ (GeV/c²)

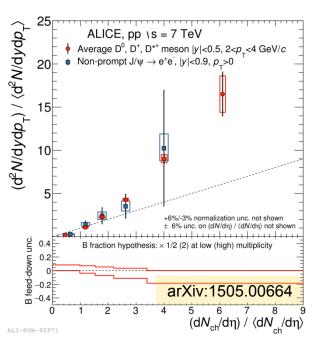

b-jet p₋ (GeV)

40 60 80 100 120 140 160 180 200

EPJC 71(2011)1846

Total charm & beauty cross sections

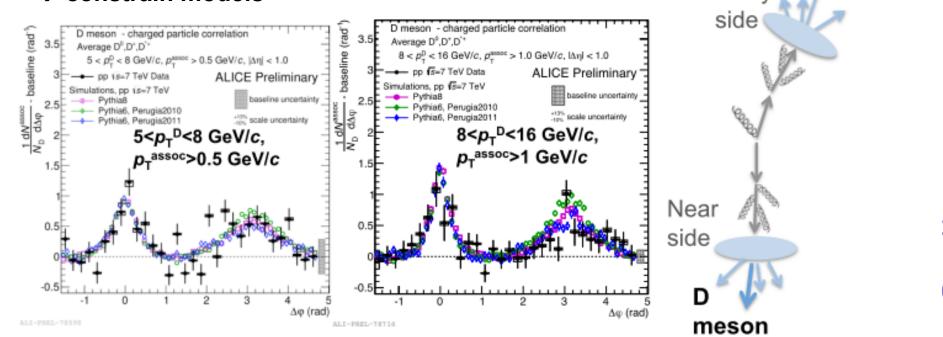




- experimental precision not yet satisfactory (e.g. for quarkonia reference!)
 - extend kinematic coverage (low p_T!)
 - larger data samples
 - improved control of systematic uncertainties
- can data constrain pQCD parameters?
- further constraints: more differential measurements

D-meson yields vs. multiplicity

do Multi-Parton Interactions (MPI) play a role on the hard scale relevant for heavy-flavor production?



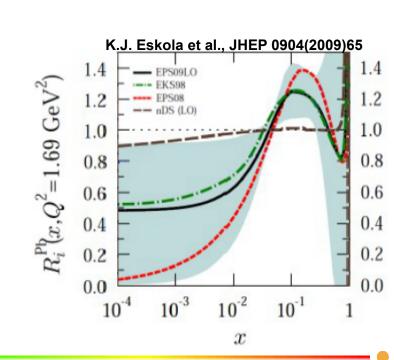
- D-meson yields increase more than linear with dN_{ch}/dη
- similar increase for open and hidden charm
 behavior driven by production mechanism, not hadronization
- similar trend for non-prompt J/ψ from open-beauty decays
- models including MPI describe observed trend

D meson – hadron correlations

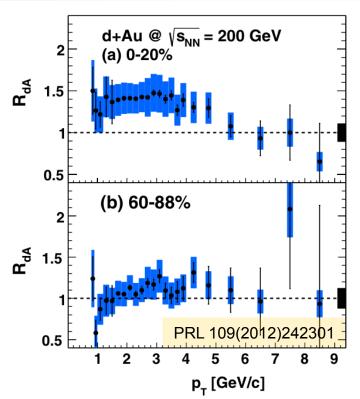
- measurement of associated hadron yields on the near and away side
- sensitive to charm production mechanism and fragmentation
 - → charm jet properties
 - → constrain models

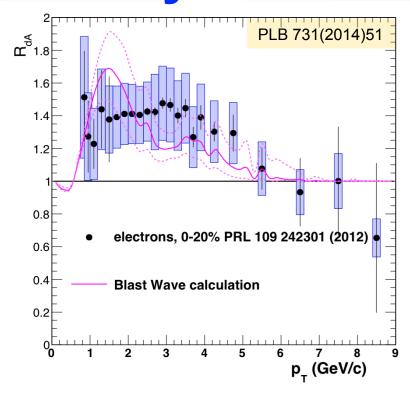
- different PYTHIA tunes are compatible with correlation measurement in pp collisions after baseline subtraction
- better precision requires more data from Run-2 at the LHC

Charged

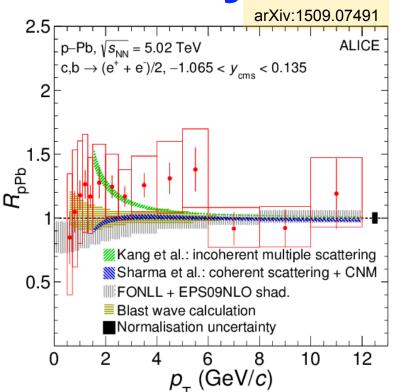

hadron

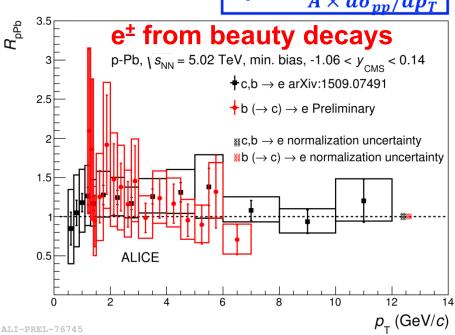
Away


Cold nuclear matter effects (and more?) in p(d)-A collisions


Heavy quarks in p(d)-A collisions

- quantify cold nuclear matter effects
 - nuclear modification of Parton Distribution Functions (shadowing, gluon saturation)
 - k_T broadening
 - energy loss in cold nuclear matter
 - multiple binary collisions
- final state effects?
- reference for A-A collisions


Electrons from HF decays at RHIC



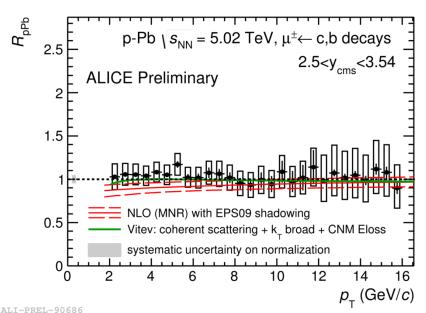
- R_{dA} > 1 for low-p_T electrons at mid rapidity (also for muons at backward rapidity)
- no "large" enhancement via anti-shadowing expected
- consistent with radial flow!?
 - → D-meson measurement highly desirable

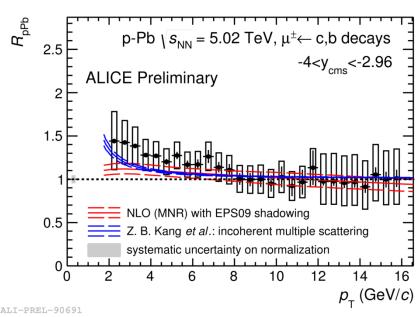
HF decay electron R_{pPb} at the LHC

$$R_{pPb} = rac{d\sigma_{pPb}/dp_T}{A imes d\sigma_{pp}/dp_T}$$

- R_{pPb} consistent with unity and described by models including initial-state effects or radial flow within uncertainties
- R_{pPb} of beauty-hadron decay electrons consistent with inclusive HF decay electron R_{pPb} and with unity
- no indication for suppression at intermediate/high p_T

Kang et al.: PL B740 (2015) 23; Sharma et al.: PR C80 (2009) 054902;


FONLL: M. Cacciari et al., JHEP 9805 (1998) 007; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065

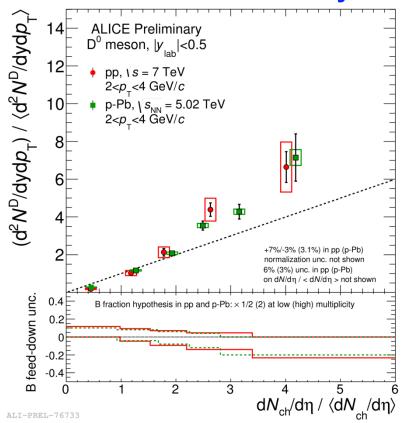

HF decay muon R_{pPb} at the LHC

Forward: p-going

- $R_{\rm pPb}$ of HF decay muons is consistent with unity at forward rapidity and slightly larger than unity at backward rapidity for 2 < $p_{\rm T}$ < 4 GeV/c
- described within uncertainties by models including cold nuclear matter effects

NLO (MNR): M. Mangano et al., NP B373 (1992) 295; EPS09: K. J. Eskola et al., JHEP 04 (2009) 065; Z. B. Kang et al.: PL B740 (2015) 23; I. Vitev: PR C75 (2007) 064906

D mesons: p_T -differential R_{pPb}


$$R_{\rm pA} = \frac{1}{< T_{\rm pA}} > \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} = \frac{1}{{\rm A}} \frac{{\rm d}\sigma_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm Prompt D}^0} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm Prompt D}^0} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm A}} = \frac{1}{{\rm A}} \frac{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$

$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$

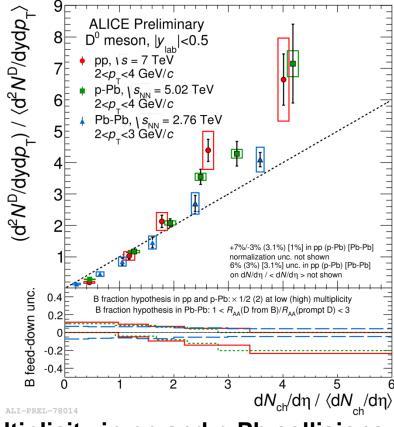
$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$

$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$

$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$

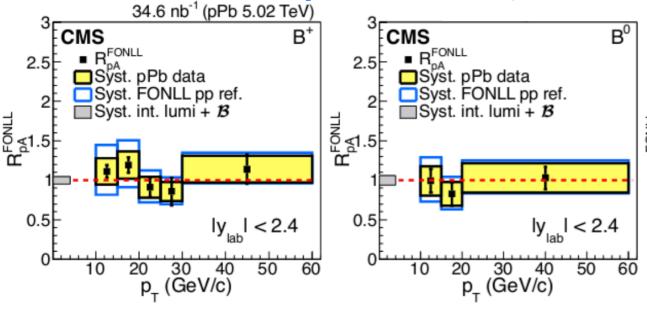
$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$

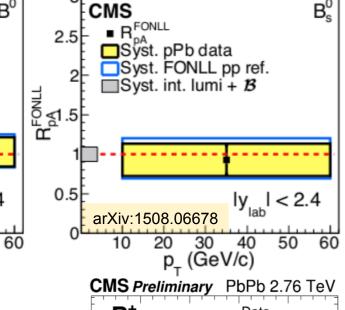
$$\frac{2}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}\rho_{\rm T}}$$


- R_{pPb} consistent with unity for all D-meson species
- D-meson R_{pPb} can be described by
 - Color Glass Condensate (CGC) calculations (arXiv:1308.1258)
 - MNR pQCD calculations (NPB 373(1992)295) with EPS09 nuclear PDF (JHEP 04(2009)065)
 - ullet model including energy loss in cold nuclear matter, nuclear shadowing, and $k_{\scriptscriptstyle T}$ broadening (PRC 75(2007)064906)
 - \rightarrow cold nuclear matter effects are small at high p_T !

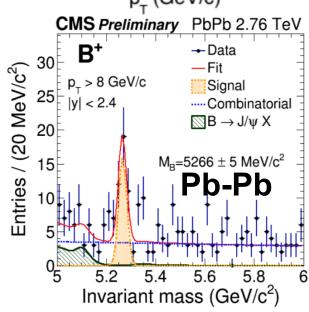
D-meson yields vs. multiplicity

self-normalized D-meson yields vs. charged-particle multiplicity

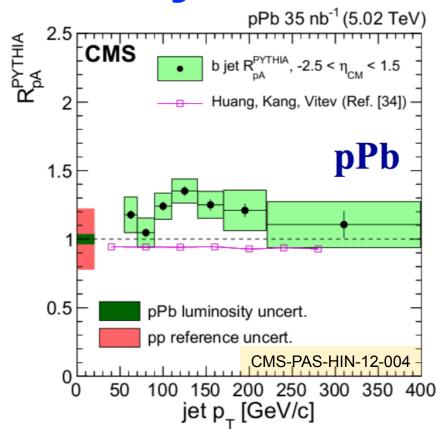


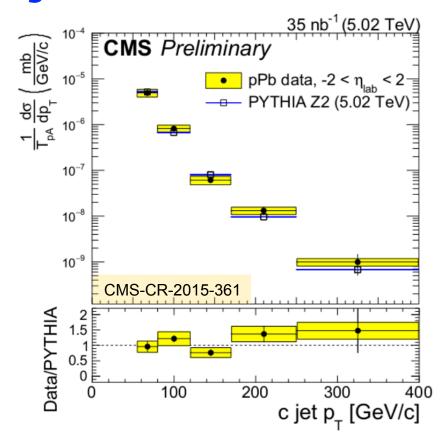


- similar trend of D-meson yields vs. multiplicity in pp and p-Pb collisions
 - pp collisions: high-multiplicity events mainly from MPI
 - p-Pb collisions: high multiplicity events also due to N_{coll} > 1
- similar trend also in Pb-Pb collisions
 - highest multiplicity bin in Pb-Pb (pp) collisions: 10% (1%) of the total cross section



B-meson R_{pPb} at the LHC

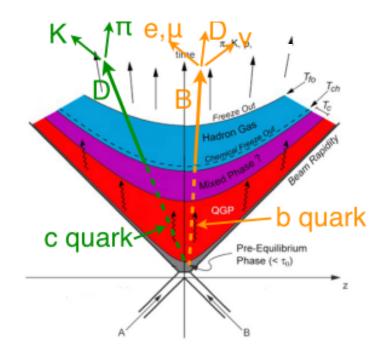



- B-meson R_{pPb} for various species
 - pp reference from FONLL pQCD
 - consistent with unity
 no indication for significant cold nuclear matter effects
- capability to reconstruct B mesons in Pb-Pb collisions as well!

Beauty and charm jets

- b-jet R_{pPb} consistent with unity within uncertainties
 - no significant suppression due to cold nuclear matter effects

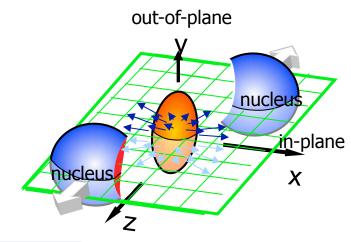
- first c-jet measurement in nuclear collisions
 - PYTHIA agrees with measured spectrum


Dense/hot QCD matter effects in A-A collisions

Energy loss

- interaction of heavy quarks with hot/dense medium
 - parton energy loss via radiative and collisional processes
 - depends on
 - color charge
 - quark mass
 - path length in the medium
 - medium density and temperature

$$\rightarrow$$
 expect: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

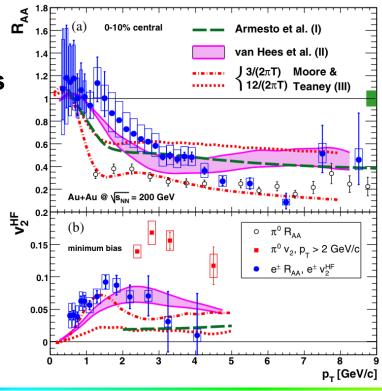

$$R_{AA} = \frac{dN_{AA}/dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}/dp_T}$$

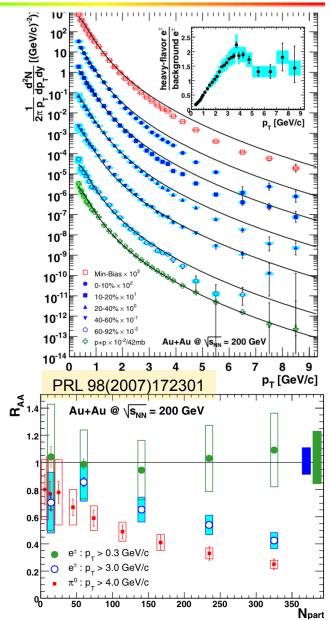
- \rightarrow R_{AA}(light hadron) < R_{AA}(D) < R_{AA}(B)?
 - caveats:
 - different shapes of parton p_T distributions in pp collisions
 - different fragmentation functions
 - role of soft particle production at low p_T

Azimuthal asymmetry

- collectivity in the hot/dense medium
 - initial spatial anisotropy
 anisotropy of particle emission in momentum space
 - quantified via a Fourier expansion in azimuthal angle with respect to the reaction/symmetry planes

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos(\varphi - \Psi_2)}{2v_2 \cos(\varphi - \Psi_2)} + \dots)$$

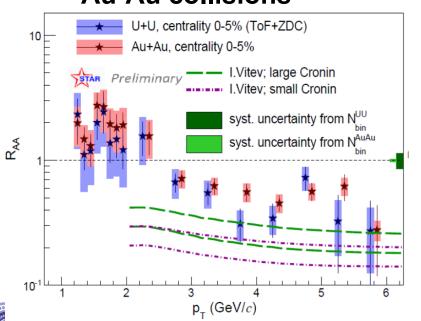

- heavy quarks participate in collectivity of the medium in case of sufficient re-scattering → approach to thermalization
- high p_T : path-length dependence of energy loss \rightarrow azimuthal asymmetry
- various methods are available to evaluate v₂
 - event plane
 - 2-particle cumulants (QC, SP methods), 4-particle cumulants ...
 - Lee-Yang zeros

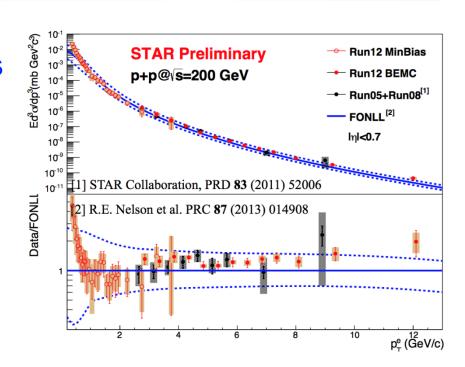


Electrons at RHIC

- electrons from HF decays in Au-Au collisions at 200 GeV
 - suppression of the yield at high p_T
 - binary scaling of the total yield
 - positive v₂
 - model comparison:

constrain transport properties of the produced medium



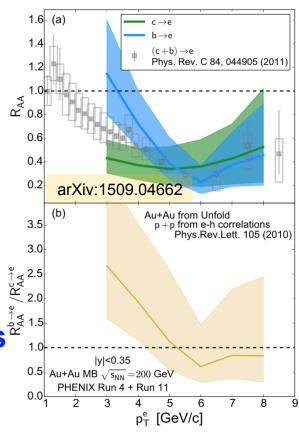


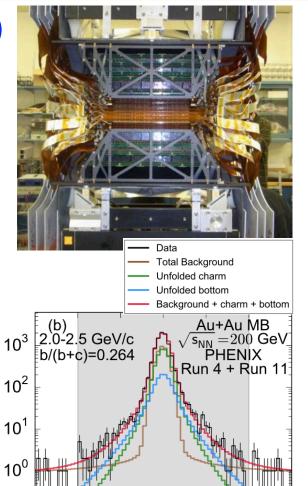
Electrons in U-U collisions at RHIC

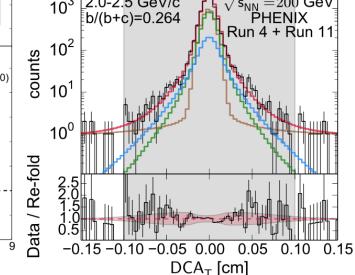
- new pp reference from STAR for electrons from HF decays
 - p_T reach extended to higher and lower p_T
- U-U collisions
 - energy density ~20% larger than in same centrality Au-Au collisions

• R_{AA} for electrons from HF decays in 5% most central collisions systematically lower than for Au-Au collisions, but still within uncertainties

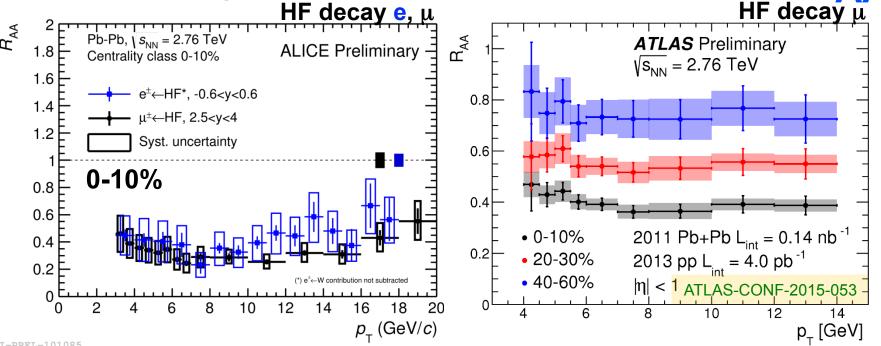
$c \rightarrow e vs. b \rightarrow e at RHIC$

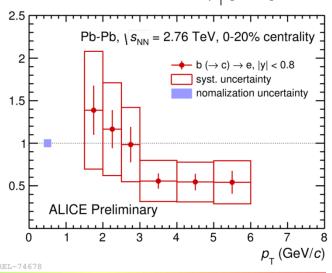

PHENIX Silicon Vertex Detector (VTX)

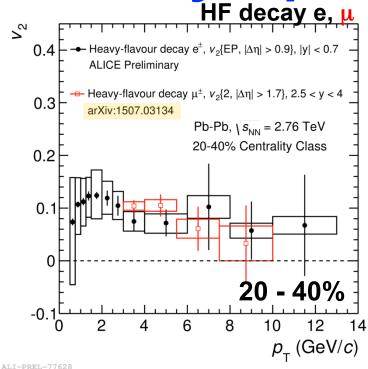

DCA_T resolution ~ 60 μm

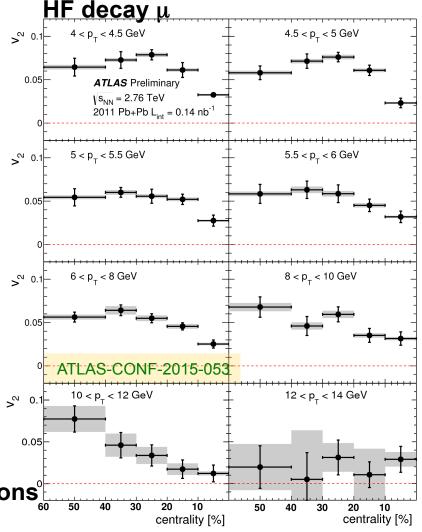

 unfolding of measured electron dN/dp_T and DCA_T distributions

→ dN/dp_T of c & b hadrons


- p_T^e < 4 GeV/c</p>
 - electrons from beauty decays suppressed less than those from charm decays
- new constraints to 1.0 new constraints on 1.0 new constraints



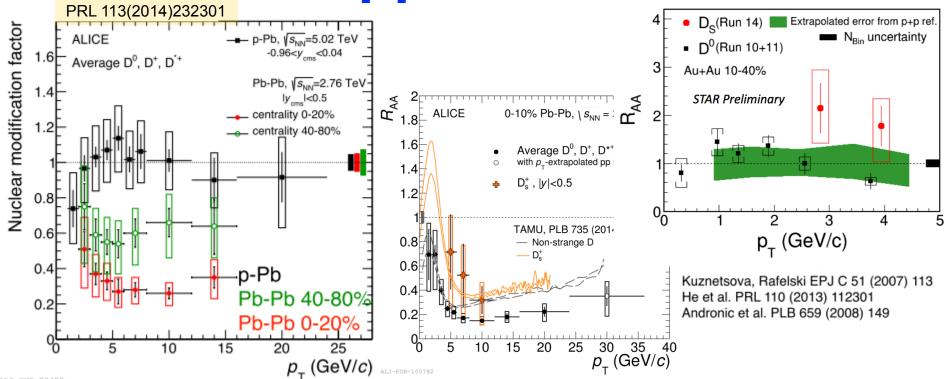

HF decay leptons at the LHC: R



- high-p_T leptons from HF decays suppressed
 - similar for HF decay electrons (|y| < 0.6) and muons (2.5 < y < 4, |y| < 1)
 - pronounced centrality dependence
 - also: hint for suppression of electrons from beauty decays
- cold nuclear matter effects small at high p_T
 - → hot/dense medium effect

HF decay leptons at the LHC: v₂

• $v_2 > 0$ at intermediate/high p_T


 similar for e[±] and μ[±] at mid rapidity and muons at forward rapidity

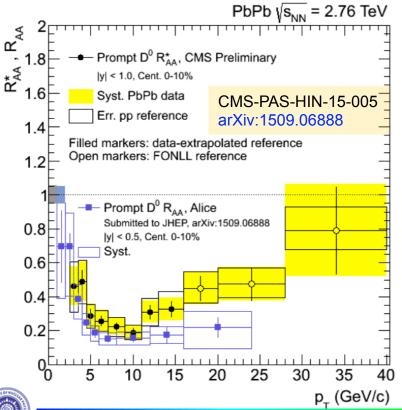
v₂ decreases towards central collisions

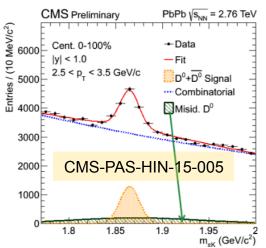
 confirms strong interaction of heavy quarks with the medium

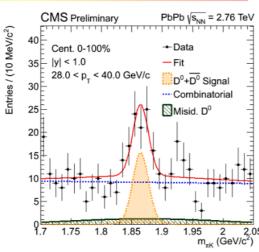
• low- p_T charm quarks participate in the collectivity of the QGP

D-meson suppression

- observed suppression in central Pb-Pb collisions at the LHC is due to the strong interaction of charm quarks with the dense/hot partonic
- hint for less suppression of D_s⁺ compared to non-strange D mesons at LHC/RHIC
 - expected if recombination plays a role in charm hadronization


TAMU: He et al.: PRL 110(2013)112301; Kuznetsova, Rafelski: EPJ C51(2007)113; Andronic et al.: PL B659(2008)149


medium

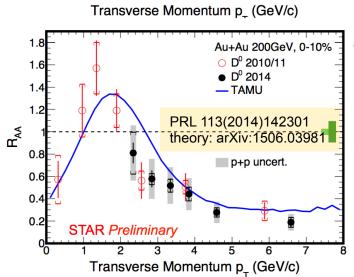

R. Averbeck, 🔀 🚟 💵

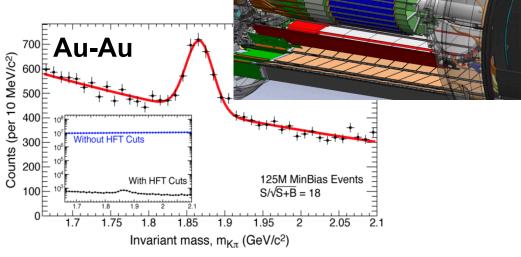
D⁰ mesons at the LHC

- D⁰, D⁺, D^{*+}, D_s⁺ mesons measured by ALICE
- prompt D^0 measured by CMS in the range $2.5 < p_T < 40 \text{ GeV/c}$

- R_{AA} shows suppression in central Pb-Pb collisions relative to data/FONLL based reference
 - significant interaction of charm quarks with the medium
 - pronounced centrality dependence
 - tension with ALICE D-meson R_{AA} for p_T > 16 GeV/c
 - → different reference





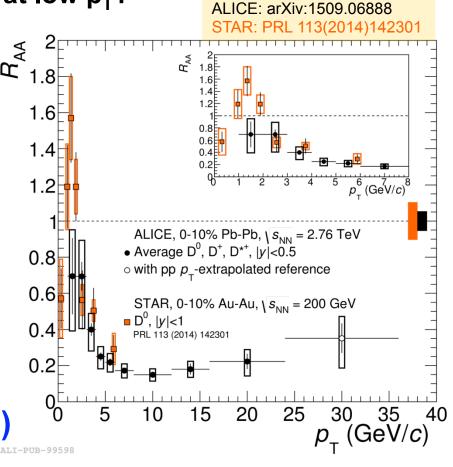

D-meson R_{AA} and v₂ at RHIC

STAR Heavy Flavor Tracker (HFT)

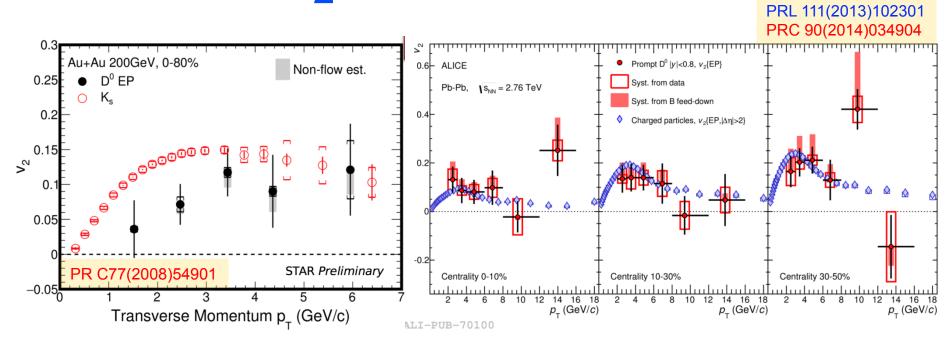
● DCA_T resolution ~ 30 μm

- D⁰ mesons in Au-Au at 200 GeV
 - \bullet $v_2 > 0$ for $p_T > 2$ GeV/c
 - yield suppressed at high p_T
 - enhancement at 1< p_T < 2 GeV/c (charm coalescence with flowing medium)
 - R_{AA} and v₂ model comparisons constrain charm diffusion coefficient

D-meson R_{AA}: RHIC vs. LHC

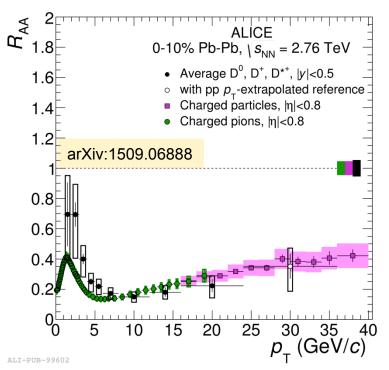

D mesons at the LHC and at RHIC

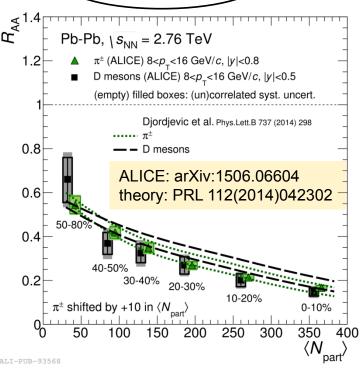
■ different trend for D-meson R_{AA} at low p_T?


• differences between Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV and

Au-Au collisions at $\sqrt{s_{NN}}$ = 0.2 TeV

- different shape of pp reference
- different modification of nPDFs
- different radial flow
- different impact of coalescence
- some models describe both measurements reasonably well (e.g. TAMU, PLB 735(2014)445)

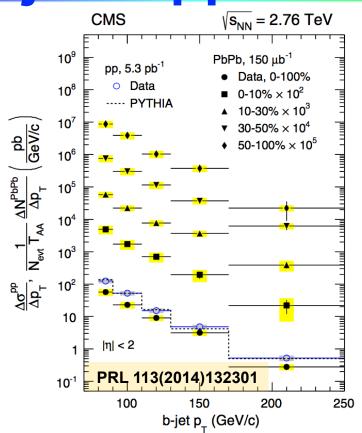

D-meson v₂: RHIC vs. LHC

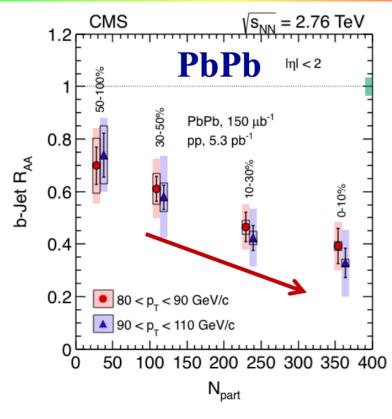


- RHIC: $D^0 v_2 < light-hadron v_2$ for $p_T < 3$ GeV/c
- D-meson v₂ measured by ALICE at the LHC
 - D-meson v2 > 0 and similar to charged-particle v₂
 - hint for increasing v₂ with decreasing centrality
- significant interaction of charm quarks with the medium
- collective motion of low-p_T charm quarks with the medium

R_{ΔΔ}: D-mesons vs. π

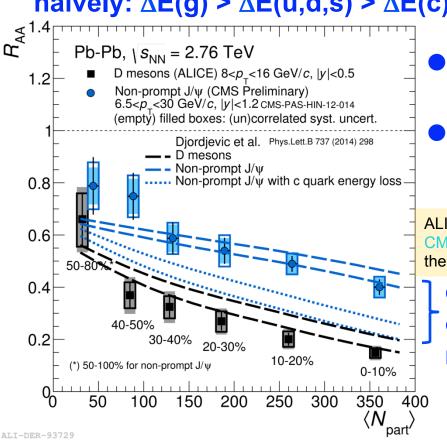
naively: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b) \rightarrow (R_{AA}(\pi) < R_{AA}(D)) < R_{AA}(B)$





- D-meson and π R_{AA} are compatible within uncertainties
- agreement consistent with models including
 - energy loss hierarchy: ∆E(g) > ∆E(u,d,s) > ∆E(c)
 - different shapes of the parton p_T distributions
 - different fragmentation functions

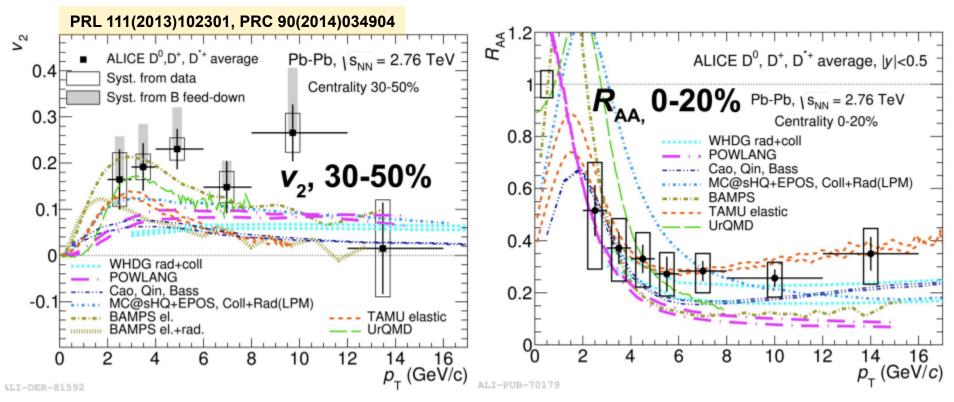
B-jet suppression at the LHC



- fully reconstructed b jets in Pb-Pb collisions at 2.76 TeV
 - suppressed compared to measured pp reference
 - qualitatively consistent with light-flavor jet suppression
 - b-jet suppression shows strong centrality dependence

R_{ΔΔ}: D mesons vs. non-prompt J/ψ

naively: $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$


- indication for R_{AA}(D) < R_{AA}(J/ψ ← B)
 in central Pb-Pb collisions
- similar <p_T> for D and B mesons (~10 GeV/c) but slightly different rapidity range

ALICE: arXiv:1506.06604 CMS: CMS-PAS-HIN-12-014 theory: PL B734(2014)286

consequence of mass difference of c and b quarks in pQCD based model calculation (Djordjevic, PLB 734(2014)286)

- pQCD model including mass-dependent energy loss predicts a difference between the R_{AA} of D mesons and non-prompt J/ ψ similar to the observation
- similar for other calculations (BAMPS, WHDG, Vitev et al.)

D-meson R_{AA} and v_2 vs. models

- \rightarrow simultaneous reproduction of R_{AA} and v_2 challenging for models
- > task for us: reduction of stat. and sys. uncertainties of data
- e[±] and μ[±] from heavy-flavor decays: similar situation

WHDG: Nucl. Phys. A 872 (2011) 265; MC@sHQ+EPOS, Coll+Rad(LPM): Phys. Rec. C89 (2004) 014905; TAMU elastic: arXiv:1401.3817 [nucl-th]; POWLANG: Eur. Phys. J. C71 (201) 1666, J.Phys. G 38 (2011) 124144; BAMPS: Phys. Rev. C 84 (2011) 024908; J. Phys. G38 (2011) 124152 Phys. Lett. B 717 (2012) 430;arXiv:1310.3597v1[hep-ph]; UrQMD: arXiv:1211.6912[hep-ph]; J. Phys.Conf. Ser. 426 (2013) 012032; Cao, Qin, Bass: Phys. Rev. C 88 (2013) 044907

Summary

- pp collisions
 - pQCD calculations describe heavy-flavor cross sections
 - interplay of soft and hard processes under investigation
 - what about correlations?
- p(d)-A collisions
 - no indication for substantial cold nuclear matter effects
 - what about collectivity in small systems?
- A-A collisions
 - strong interaction of heavy quarks with the medium
 - \rightarrow suppression of yields at high p_T consistent with partonic energy loss
 - → indication for charm (maybe beauty?) participating in the medium's collective expansion
- what is missing?
 - better precision, more statistics, extended p_T coverage (high and low (!) p_T)
 - smaller uncertainties and new differential measurements will help to
 - constrain model calculations quantitatively
 - address open questions concerning the energy-loss mechanisms, their pathlength dependence, thermalization, coalescence involving heavy quarks

