
Understanding Random Forests

Gilles Louppe (@glouppe)

CERN, September 21, 2015

https://twitter.com/glouppe

Outline

1 Motivation

2 Growing decision trees

3 Random forests

4 Boosting

5 Variable importances

6 Summary

2 / 28

Motivation

3 / 28

Running example

From physicochemical
properties (alcohol, acidity,

sulphates, ...),

learn a model

to predict wine taste
preferences.

4 / 28

Outline

1 Motivation

2 Growing decision trees

3 Random Forests

4 Boosting

5 Variable importances

6 Summary

Supervised learning

• Data comes as a finite learning set L = (X, y) where
Input samples are given as an array of shape (n samples,

n features)

E.g., feature values for wine physicochemical properties:

fixed acidity, volatile acidity, ...

X = [[7.4 0. ... 0.56 9.4 0.]

[7.8 0. ... 0.68 9.8 0.]

...

[7.8 0.04 ... 0.65 9.8 0.]]

Output values are given as an array of shape (n samples,)

E.g., wine taste preferences (from 0 to 10):

y = [5 5 5 ... 6 7 6]

• The goal is to build an estimator ϕL : X 7→ Y minimizing

Err(ϕL) = EX ,Y {L(Y ,ϕL.predict(X))}.

5 / 28

Decision trees (Breiman et al., 1984)

0.7

0.5

X1

X2

t5
t3

t4
𝑡2

𝑋1 ≤0.7

𝑡1

𝑡3

𝑡4 𝑡5

𝒙

𝑝(𝑌 = 𝑐|𝑋 = 𝒙)

Split node

Leaf node≤ >

𝑋2 ≤0.5
≤ >

function BuildDecisionTree(L)
Create node t
if the stopping criterion is met for t then

Assign a model to ŷt
else

Find the split on L that maximizes impurity decrease

s∗ = argmax
s

i(t) − pLi(t
s
L) − pR i(t

s
R)

Partition L into LtL ∪LtR according to s∗

tL = BuildDecisionTree(LtL)
tR = BuildDecisionTree(LtR)

end if
return t

end function
6 / 28

Composability of decision trees

Decision trees can be used to solve several machine learning tasks
by swapping the impurity and leaf model functions:

0-1 loss (classification)

ŷt = arg maxc∈Y p(c |t), i(t) = entropy(t) or i(t) = gini(t)

Mean squared error (regression)

ŷt = mean(y |t), i(t) = 1
Nt

∑
x,y∈Lt

(y − ŷt)
2

Least absolute deviance (regression)

ŷt = median(y |t), i(t) = 1
Nt

∑
x,y∈Lt

|y − ŷt |

Density estimation

ŷt = N(µt ,Σt), i(t) = differential entropy(t)

7 / 28

Sample weights

Sample weights can be accounted for by adapting the impurity and
leaf model functions.

Weighted mean squared error

ŷt =
1∑
w w

∑
x,y ,w∈Lt

wy

i(t) = 1∑
w w

∑
x,y ,w∈Lt

w(y − ŷt)
2

Weights are assumed to be non-negative since these quantities may
otherwise be undefined. (E.g., what if

∑
w w < 0?)

8 / 28

sklearn.tree

Fit a decision tree

from sklearn.tree import DecisionTreeRegressor

estimator = DecisionTreeRegressor(criterion="mse", # Set i(t) function

max_leaf_nodes=5)

estimator.fit(X_train, y_train)

Predict target values

y_pred = estimator.predict(X_test)

MSE on test data

from sklearn.metrics import mean_squared_error

score = mean_squared_error(y_test, y_pred)

>>> 0.572049826453

9 / 28

Visualize and interpret

Display tree

from sklearn.tree import export_graphviz

export_graphviz(estimator, out_file="tree.dot",

feature_names=feature_names)

10 / 28

Strengths and weaknesses of decision trees

• Non-parametric model, proved to be consistent.

• Support heterogeneous data (continuous, ordered or
categorical variables).

• Flexibility in loss functions (but choice is limited).

• Fast to train, fast to predict.

In the average case, complexity of training is Θ(pN log2 N).

• Easily interpretable.

• Low bias, but usually high variance

Solution: Combine the predictions of several randomized trees
into a single model.

11 / 28

Outline

1 Motivation

2 Growing decision trees

3 Random Forests

4 Boosting

5 Variable importances

6 Summary

Random Forests (Breiman, 2001; Geurts et al., 2006)

𝒙

𝑝𝜑1
(𝑌 = 𝑐|𝑋 = 𝒙)

𝜑1 𝜑𝑀

…

𝑝𝜑𝑚
(𝑌 = 𝑐|𝑋 = 𝒙)

 ∑

𝑝𝜓(𝑌 = 𝑐|𝑋 = 𝒙)

Randomization
• Bootstrap samples } Random Forests• Random selection of K 6 p split variables } Extra-Trees• Random selection of the threshold

12 / 28

Bias and variance

13 / 28

Bias-variance decomposition

Theorem. For the squared error loss, the bias-variance
decomposition of the expected generalization error
EL{Err(ψL,θ1,...,θM (x))} at X = x of an ensemble of M
randomized models ϕL,θm is

EL{Err(ψL,θ1,...,θM (x))} = noise(x) + bias2(x) + var(x),

where

noise(x) = Err(ϕB(x)),

bias2(x) = (ϕB(x) − EL,θ{ϕL,θ(x)})
2,

var(x) = ρ(x)σ2L,θ(x) +
1 − ρ(x)

M
σ2L,θ(x).

and where ρ(x) is the Pearson correlation coefficient between the
predictions of two randomized trees built on the same learning set.

14 / 28

Diagnosing the error of random forests (Louppe, 2014)

• Bias: Identical to the bias of a single randomized tree.

• Variance: var(x) = ρ(x)σ2L,θ(x) +
1−ρ(x)

M σ2L,θ(x)

As M →∞, var(x)→ ρ(x)σ2L,θ(x)
The stronger the randomization, ρ(x)→ 0, var(x)→ 0.
The weaker the randomization, ρ(x)→ 1, var(x)→ σ2L,θ(x)

Bias-variance trade-off. Randomization increases bias but makes
it possible to reduce the variance of the corresponding ensemble
model. The crux of the problem is to find the right trade-off.

15 / 28

Tuning randomization in sklearn.ensemble

from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor

from sklearn.cross_validation import ShuffleSplit

from sklearn.learning_curve import validation_curve

Validation of max_features, controlling randomness in forests

param_range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

_, test_scores = validation_curve(

RandomForestRegressor(n_estimators=100, n_jobs=-1), X, y,

cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),

param_name="max_features", param_range=param_range,

scoring="mean_squared_error")

test_scores_mean = np.mean(-test_scores, axis=1)

plt.plot(param_range, test_scores_mean, label="RF", color="g")

_, test_scores = validation_curve(

ExtraTreesRegressor(n_estimators=100, n_jobs=-1), X, y,

cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),

param_name="max_features", param_range=param_range,

scoring="mean_squared_error")

test_scores_mean = np.mean(-test_scores, axis=1)

plt.plot(param_range, test_scores_mean, label="ETs", color="r")

16 / 28

Tuning randomization in sklearn.ensemble

Best-tradeoff: ExtraTrees, for max features=6.

17 / 28

Benchmarks and implementation

Scikit-Learn provides a robust implementation combining both
algorithmic and code optimizations. It is one of the fastest
among all libraries and programming languages.

0

2000

4000

6000

8000

10000

12000

14000

Fi
t

ti
m

e
(s

)

203.01 211.53

4464.65

3342.83

1518.14 1711.94

1027.91

13427.06

10941.72

Scikit-Learn-RF
Scikit-Learn-ETs
OpenCV-RF
OpenCV-ETs
OK3-RF
OK3-ETs
Weka-RF
R-RF
Orange-RF

Scikit-Learn
Python, Cython

OpenCV
C++

OK3
C Weka

Java

randomForest
R, Fortran

Orange
Python

18 / 28

Benchmarks and implementation

19 / 28

Strengths and weaknesses of forests

• One of the best off-the-self learning algorithm, requiring
almost no tuning.

• Fine control of bias and variance through averaging and
randomization, resulting in better performance.

• Moderately fast to train and to predict.

Θ(MKÑ log2 Ñ) for RFs (where Ñ = 0.632N)
Θ(MKN logN) for ETs

• Embarrassingly parallel (use n jobs).

• Less interpretable than decision trees.

20 / 28

Outline

1 Motivation

2 Growing decision trees

3 Random Forests

4 Boosting

5 Variable importances

6 Summary

Gradient Boosted Regression Trees (Friedman, 2001)
• GBRT fits an additive model of the form

ϕ(x) =
M∑

m=1

γmhm(x)

• The ensemble is built in a forward stagewise manner. That is

ϕm(x) = ϕm−1(x) + γmhm(x)

where hm : X 7→ R is a regression tree approximating the
gradient step ∆ϕL(Y ,ϕm−1(X)).

2 6 10
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Ground truth

2 6 10
x

∼

tree 1

2 6 10
x

+

tree 2

2 6 10
x

+

tree 3

21 / 28

Careful tuning required
from sklearn.ensemble import GradientBoostingRegressor

from sklearn.cross_validation import ShuffleSplit

from sklearn.grid_search import GridSearchCV

Careful tuning is required to obtained good results

param_grid = {"loss": ["mse", "lad", "huber"],

"learning_rate": [0.1, 0.01, 0.001],

"max_depth": [3, 5, 7],

"min_samples_leaf": [1, 3, 5],

"subsample": [1.0, 0.9, 0.8]}

est = GradientBoostingRegressor(n_estimators=1000)

grid = GridSearchCV(est, param_grid,

cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),

scoring="mean_squared_error",

n_jobs=-1).fit(X, y)

gbrt = grid.best_estimator_

See our PyData 2014 tutorial for further guidance
https://github.com/pprett/pydata-gbrt-tutorial

22 / 28

https://github.com/pprett/pydata-gbrt-tutorial

Strengths and weaknesses of GBRT

• Often more accurate than random forests.

• Flexible framework, that can adapt to arbitrary loss functions.

• Fine control of under/overfitting through regularization (e.g.,
learning rate, subsampling, tree structure, penalization term in
the loss function, etc).

• Careful tuning required.

• Slow to train, fast to predict.

23 / 28

Outline

1 Motivation

2 Growing decision trees

3 Random Forests

4 Boosting

5 Variable importances

6 Summary

Variable selection/ranking/exploration

Tree-based models come with built-in methods for variable
selection, ranking or exploration.

The main goals are:

• To reduce training times;

• To enhance generalisation by reducing overfitting;

• To uncover relations between variables and ease model
interpretation.

24 / 28

Variable importances

importances = pd.DataFrame()

Variable importances with Random Forest, default parameters

est = RandomForestRegressor(n_estimators=10000, n_jobs=-1).fit(X, y)

importances["RF"] = pd.Series(est.feature_importances_,

index=feature_names)

Variable importances with Totally Randomized Trees

est = ExtraTreesRegressor(max_features=1, max_depth=3,

n_estimators=10000, n_jobs=-1).fit(X, y)

importances["TRTs"] = pd.Series(est.feature_importances_,

index=feature_names)

Variable importances with GBRT

importances["GBRT"] = pd.Series(gbrt.feature_importances_,

index=feature_names)

importances.plot(kind="barh")

25 / 28

Variable importances

Importances are measured only through the eyes of the model.
They may not tell the entire nor the same story! (Louppe et al.,

2013)

26 / 28

Partial dependence plots

Relation between the response Y and a subset of features,
marginalized over all other features.

from sklearn.ensemble.partial_dependence import plot_partial_dependence

plot_partial_dependence(gbrt, X,

features=[1, 10], feature_names=feature_names)

27 / 28

Outline

1 Motivation

2 Growing decision trees

3 Random Forests

4 Boosting

5 Variable importances

6 Summary

Summary

• Tree-based methods offer a flexible and efficient
non-parametric framework for classification and regression.

• Applicable to a wide variety of problems, with a fine control
over the model that is learned.

• Assume a good feature representation – i.e., tree-based
methods are often not that good on very raw input data, like
pixels, speech signals, etc.

• Insights on the problem under study (variable importances,
dependence plots, embedding, ...).

• Efficient implementation in Scikit-Learn.

28 / 28

References

Breiman, L. (2001). Random Forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).
Classification and regression trees.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pages 1189–1232.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees.
Machine Learning, 63(1):3–42.

Louppe, G. (2014). Understanding random forests: From theory to practice.
arXiv preprint arXiv:1407.7502.

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). Understanding
variable importances in forests of randomized trees. In Advances in Neural
Information Processing Systems, pages 431–439.

	Motivation
	Growing decision trees
	Random Forests
	Boosting
	Variable importances
	Summary

