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Running example

From physicochemical
properties (alcohol, acidity,

sulphates, ...),

learn a model

to predict wine taste
preferences.

4 / 28



Outline

1 Motivation

2 Growing decision trees

3 Random Forests

4 Boosting

5 Variable importances

6 Summary



Supervised learning

• Data comes as a finite learning set L = (X, y) where
Input samples are given as an array of shape (n samples,

n features)

E.g., feature values for wine physicochemical properties:

# fixed acidity, volatile acidity, ...

X = [[ 7.4 0. ... 0.56 9.4 0. ]

[ 7.8 0. ... 0.68 9.8 0. ]

...

[ 7.8 0.04 ... 0.65 9.8 0. ]]

Output values are given as an array of shape (n samples,)

E.g., wine taste preferences (from 0 to 10):

y = [5 5 5 ... 6 7 6]

• The goal is to build an estimator ϕL : X 7→ Y minimizing

Err(ϕL) = EX ,Y {L(Y ,ϕL.predict(X))}.
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Decision trees (Breiman et al., 1984)
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function BuildDecisionTree(L)
Create node t
if the stopping criterion is met for t then

Assign a model to ŷt
else

Find the split on L that maximizes impurity decrease

s∗ = argmax
s

i(t) − pLi(t
s
L) − pR i(t

s
R)

Partition L into LtL ∪LtR according to s∗

tL = BuildDecisionTree(LtL)
tR = BuildDecisionTree(LtR )

end if
return t

end function
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Composability of decision trees

Decision trees can be used to solve several machine learning tasks
by swapping the impurity and leaf model functions:

0-1 loss (classification)

ŷt = arg maxc∈Y p(c |t), i(t) = entropy(t) or i(t) = gini(t)

Mean squared error (regression)

ŷt = mean(y |t), i(t) = 1
Nt

∑
x,y∈Lt

(y − ŷt)
2

Least absolute deviance (regression)

ŷt = median(y |t), i(t) = 1
Nt

∑
x,y∈Lt

|y − ŷt |

Density estimation

ŷt = N(µt ,Σt), i(t) = differential entropy(t)
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Sample weights

Sample weights can be accounted for by adapting the impurity and
leaf model functions.

Weighted mean squared error

ŷt =
1∑
w w

∑
x,y ,w∈Lt

wy

i(t) = 1∑
w w

∑
x,y ,w∈Lt

w(y − ŷt)
2

Weights are assumed to be non-negative since these quantities may
otherwise be undefined. (E.g., what if

∑
w w < 0?)
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sklearn.tree

# Fit a decision tree

from sklearn.tree import DecisionTreeRegressor

estimator = DecisionTreeRegressor(criterion="mse", # Set i(t) function

max_leaf_nodes=5)

estimator.fit(X_train, y_train)

# Predict target values

y_pred = estimator.predict(X_test)

# MSE on test data

from sklearn.metrics import mean_squared_error

score = mean_squared_error(y_test, y_pred)

>>> 0.572049826453
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Visualize and interpret

# Display tree

from sklearn.tree import export_graphviz

export_graphviz(estimator, out_file="tree.dot",

feature_names=feature_names)
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Strengths and weaknesses of decision trees

• Non-parametric model, proved to be consistent.

• Support heterogeneous data (continuous, ordered or
categorical variables).

• Flexibility in loss functions (but choice is limited).

• Fast to train, fast to predict.

In the average case, complexity of training is Θ(pN log2 N).

• Easily interpretable.

• Low bias, but usually high variance

Solution: Combine the predictions of several randomized trees
into a single model.
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Random Forests (Breiman, 2001; Geurts et al., 2006)
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(𝑌 = 𝑐|𝑋 = 𝒙) 

 ∑ 

𝑝𝜓(𝑌 = 𝑐|𝑋 = 𝒙) 

Randomization
• Bootstrap samples } Random Forests• Random selection of K 6 p split variables } Extra-Trees• Random selection of the threshold
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Bias and variance
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Bias-variance decomposition

Theorem. For the squared error loss, the bias-variance
decomposition of the expected generalization error
EL{Err(ψL,θ1,...,θM (x))} at X = x of an ensemble of M
randomized models ϕL,θm is

EL{Err(ψL,θ1,...,θM (x))} = noise(x) + bias2(x) + var(x),

where

noise(x) = Err(ϕB(x)),

bias2(x) = (ϕB(x) − EL,θ{ϕL,θ(x)})
2,

var(x) = ρ(x)σ2L,θ(x) +
1 − ρ(x)

M
σ2L,θ(x).

and where ρ(x) is the Pearson correlation coefficient between the
predictions of two randomized trees built on the same learning set.
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Diagnosing the error of random forests (Louppe, 2014)

• Bias: Identical to the bias of a single randomized tree.

• Variance: var(x) = ρ(x)σ2L,θ(x) +
1−ρ(x)

M σ2L,θ(x)

As M →∞, var(x)→ ρ(x)σ2L,θ(x)
The stronger the randomization, ρ(x)→ 0, var(x)→ 0.
The weaker the randomization, ρ(x)→ 1, var(x)→ σ2L,θ(x)

Bias-variance trade-off. Randomization increases bias but makes
it possible to reduce the variance of the corresponding ensemble
model. The crux of the problem is to find the right trade-off.
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Tuning randomization in sklearn.ensemble

from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor

from sklearn.cross_validation import ShuffleSplit

from sklearn.learning_curve import validation_curve

# Validation of max_features, controlling randomness in forests

param_range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

_, test_scores = validation_curve(

RandomForestRegressor(n_estimators=100, n_jobs=-1), X, y,

cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),

param_name="max_features", param_range=param_range,

scoring="mean_squared_error")

test_scores_mean = np.mean(-test_scores, axis=1)

plt.plot(param_range, test_scores_mean, label="RF", color="g")

_, test_scores = validation_curve(

ExtraTreesRegressor(n_estimators=100, n_jobs=-1), X, y,

cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),

param_name="max_features", param_range=param_range,

scoring="mean_squared_error")

test_scores_mean = np.mean(-test_scores, axis=1)

plt.plot(param_range, test_scores_mean, label="ETs", color="r")
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Tuning randomization in sklearn.ensemble

Best-tradeoff: ExtraTrees, for max features=6.
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Benchmarks and implementation

Scikit-Learn provides a robust implementation combining both
algorithmic and code optimizations. It is one of the fastest
among all libraries and programming languages.
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Benchmarks and implementation

19 / 28



Strengths and weaknesses of forests

• One of the best off-the-self learning algorithm, requiring
almost no tuning.

• Fine control of bias and variance through averaging and
randomization, resulting in better performance.

• Moderately fast to train and to predict.

Θ(MKÑ log2 Ñ) for RFs (where Ñ = 0.632N)
Θ(MKN logN) for ETs

• Embarrassingly parallel (use n jobs).

• Less interpretable than decision trees.
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Gradient Boosted Regression Trees (Friedman, 2001)
• GBRT fits an additive model of the form

ϕ(x) =
M∑

m=1

γmhm(x)

• The ensemble is built in a forward stagewise manner. That is

ϕm(x) = ϕm−1(x) + γmhm(x)

where hm : X 7→ R is a regression tree approximating the
gradient step ∆ϕL(Y ,ϕm−1(X )).
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Careful tuning required
from sklearn.ensemble import GradientBoostingRegressor

from sklearn.cross_validation import ShuffleSplit

from sklearn.grid_search import GridSearchCV

# Careful tuning is required to obtained good results

param_grid = {"loss": ["mse", "lad", "huber"],

"learning_rate": [0.1, 0.01, 0.001],

"max_depth": [3, 5, 7],

"min_samples_leaf": [1, 3, 5],

"subsample": [1.0, 0.9, 0.8]}

est = GradientBoostingRegressor(n_estimators=1000)

grid = GridSearchCV(est, param_grid,

cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),

scoring="mean_squared_error",

n_jobs=-1).fit(X, y)

gbrt = grid.best_estimator_

See our PyData 2014 tutorial for further guidance
https://github.com/pprett/pydata-gbrt-tutorial
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Strengths and weaknesses of GBRT

• Often more accurate than random forests.

• Flexible framework, that can adapt to arbitrary loss functions.

• Fine control of under/overfitting through regularization (e.g.,
learning rate, subsampling, tree structure, penalization term in
the loss function, etc).

• Careful tuning required.

• Slow to train, fast to predict.
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Variable selection/ranking/exploration

Tree-based models come with built-in methods for variable
selection, ranking or exploration.

The main goals are:

• To reduce training times;

• To enhance generalisation by reducing overfitting;

• To uncover relations between variables and ease model
interpretation.

24 / 28



Variable importances

importances = pd.DataFrame()

# Variable importances with Random Forest, default parameters

est = RandomForestRegressor(n_estimators=10000, n_jobs=-1).fit(X, y)

importances["RF"] = pd.Series(est.feature_importances_,

index=feature_names)

# Variable importances with Totally Randomized Trees

est = ExtraTreesRegressor(max_features=1, max_depth=3,

n_estimators=10000, n_jobs=-1).fit(X, y)

importances["TRTs"] = pd.Series(est.feature_importances_,

index=feature_names)

# Variable importances with GBRT

importances["GBRT"] = pd.Series(gbrt.feature_importances_,

index=feature_names)

importances.plot(kind="barh")
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Variable importances

Importances are measured only through the eyes of the model.
They may not tell the entire nor the same story! (Louppe et al.,

2013)
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Partial dependence plots

Relation between the response Y and a subset of features,
marginalized over all other features.

from sklearn.ensemble.partial_dependence import plot_partial_dependence

plot_partial_dependence(gbrt, X,

features=[1, 10], feature_names=feature_names)
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Summary

• Tree-based methods offer a flexible and efficient
non-parametric framework for classification and regression.

• Applicable to a wide variety of problems, with a fine control
over the model that is learned.

• Assume a good feature representation – i.e., tree-based
methods are often not that good on very raw input data, like
pixels, speech signals, etc.

• Insights on the problem under study (variable importances,
dependence plots, embedding, ...).

• Efficient implementation in Scikit-Learn.
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