
CPPM R&D plans for LHCb upgrade in 2009

- Feasability
- Identification of key technologies
- Studies to be done
- Conclusion

Jean-Pierre Cachemiche on behalf of the Marseille group, CPPM

Foreseen « New Readout » board

Feasability ?

New readout board: can we do it ?

- Density: 400 Gbits/s = 125 GBT links (if 80 bits are used for data acq)
 - ➡ 11 SNAP12 receivers
 - 4 to 6 times the density of current boards
 - ➡ + 11 SNAP12 transmitters if we follow the GBT bidirectional philosophy
 - (8 + 1) large FPGAs to collect and process the data
 2 times the density of current boards
- **Speed:** 4.8 Gbits/s in input, 10 Gbits/s in output
 - ➔ 3 to 6 times the current speed !
 - Parasitic phenomenas increase exponentially with the speed (skin effect, dielectric losses, sensitivity to jitter, ...)
- Compression factor: is a factor 10 still achievable with a higher luminosity ?
- Can we build a 40 MHz read out board at a cost equivalent to the current Tell1 boards ?

No immediate reply: Above points need to be carefully studied

Other crucial points (1)

How do we supervise the system ?

 Can we embed the « Credit card PC » within the FPGAs ? Can we run Linux on it ?

Can we comply to emerging standards ?

- New standards based on high speed links: ATCA, µTCA
- But ... impose severe constraints: communication topologies, board formats
- Really a lot of possible configurations ! Manufacturers cannot provide all solutions.
 How many will survive in a few years ?
- Usability ?

Other crucial points (2)

Can we emulate the GBT protocol in FPGAs ?

- GBT protocol and coding is custom
- No support in current FPGA serializer/deserializers
 Implementability of the GBT protocol on the FPGA side ? Occupancy ? Latency ?
- Feasibility of TFC broadcast through FPGAs deserializers/serializers
 FPGAs DO NOT garantee the phase of the extracted clock

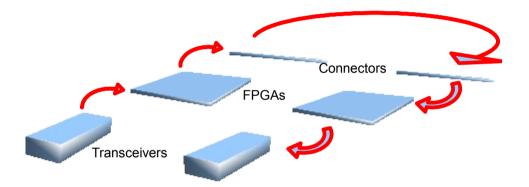
Can we accelerate the design and redesign ?

- Current size of FPGAs is 10 fold the size of FPGAs used in LHCb
- Time required to fill a FPGA was already around one year or more. Unthinkable to multiply this time by a factor 10.
 Can we find methods and tools to accelerate designs ?

Other crucial points (3)

Can we take advantage of the huge FPGA processing power?

Could be used to provide additional pre-process data to help farm doing their job


Do we completely suppress the hardware trigger ?

- Read out boards could be used to compute the trigger or part of it
- Decreases pression on farms and network
- But requires configurable high speed connectivity between FPGAs and boards

What we propose to study

Technology validation

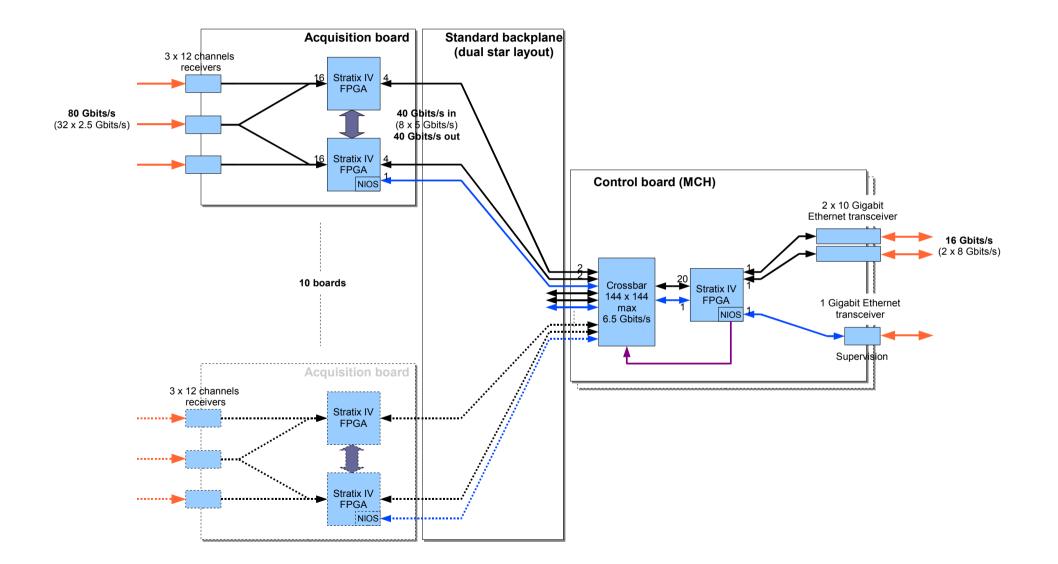
- This is a technological survey not a final product !
- The prototype helps us to test typical data paths:
 - Optical transceiver to/from FPGA
 - ➡ FPGA to FPGA through backplane

 Limit the number of solutions to be explored

Electronics

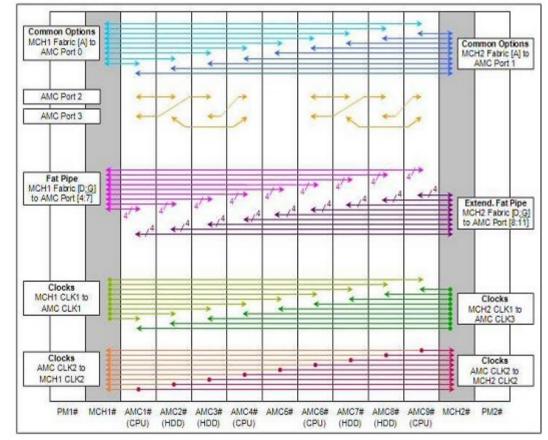
Prototype implemented on µTCA form factor

- Form factor is small: more appropriate for prototyping
- Cheap
- Many features off the shelf:
 - 🔸 Crate
 - Power supplies
 - Standard backplane with dual star connectivity
 - Supervision entity running Linux
 - Embedded hub
 - Clock distribution



µTCA crate (Source Kontron)

Prototype architecture


Technological blocks we will focus on (1)

Signal integrity

- Links at 8 Gbits/s and more
 - Connectors and backplanes
 - Domain of operation
 - Manufacturing constraints

Connectivity between boards

 Use of a star or dual star connectivity to allow exchanges between boards

Dual star topology (source Schroff)

Technological blocks we will focus on (2)

Control

- Implementation of a μC Linux core embedded in the FPGA
- Implementation of Dim/PVSS server on it

Development speed

- Study tools for automatic generation of VHDL code from software
 - Automated generation of local bus interface/ registers
 - High level layer connecting precompiled pieces of design « à la L0DU »
 - → Build customizable compression libraries, build or use IPs, ...
 - SystemC evaluation for codesign

÷...

Conclusion

- 40 MHz read-out relies on emerging technologies and maybe on next generation
- Very difficult for the time being to define the better cost/technological compromise:
 - Feasibility studies mandatory on envisaged technologies
 - Validation elementary building blocks
 - Key input to design final architecture and to determine its costs
- Important to keep open hardware solutions for the trigger
- We are supported by our lab and by IN2P3 to evaluate these building blocks