

NLO+NLL squark and gluino cross-sections with threshold-improved PDFs

Juan Rojo STFC Rutherford Fellow Rudolf Peierls Center for Theoretical Physics University of Oxford

PDF4LHC Working Group CERN, 26/10/2015

Bonvini, Marzani, JR, Rottoli, Ubiali, Ball, Bertone, Carrazza, Hartland, arXiv:1507.01006 Beenakker, Borschensky, Kramer, Kulesza, Laenen, Marzani, JR, arXiv:1510.00375

Juan Rojo

PDF4LHC, CERN, 26/10/2015

Why threshold resummation?

The basic idea of threshold resummation methods is simple. Start from a factorised cross-section and transform it to **Mellin (conjugate) space**

$$\sigma(x,Q^2) = x \sum_{a,b} \int_x^1 \frac{dz}{z} \mathcal{L}_{ab}\left(\frac{x}{z},\mu_{\rm F}^2\right) \frac{1}{z} \hat{\sigma}_{ab}\left(z,Q^2,\alpha_s(\mu_{\rm R}^2),\frac{Q^2}{\mu_{\rm F}^2},\frac{Q^2}{\mu_{\rm R}^2}\right)$$

$$\sigma(N,Q^2) = \int_0^1 dx \, x^{N-2} \sigma(x,Q^2) = \sum_{a,b} \mathcal{L}_{ab}(N,Q^2) \hat{\sigma}_{ab}\left(N,Q^2,\alpha_s\right)$$

Then, using different techniques, we can computed a resummed coefficient function that includes terms or the type $\alpha_{s^k} \ln^p N$ (corresponding to $\alpha_{s^k} \ln^r (1-x)$) to all orders in perturbation theory

$$\hat{\sigma}_{ab}^{(\text{res})}(N,Q^2,\alpha_s) = \sigma_{ab}^{(\text{born})}(N,Q^2,\alpha_s) C_{ab}^{(\text{res})}(N,\alpha_s)$$

$$C^{(N-\text{soft})}(N,\alpha_s) = g_0(\alpha_s) \exp \mathcal{S}(\ln N,\alpha_s),$$

$$\mathcal{S}(\ln N,\alpha_s) = \left[\frac{1}{\alpha_s}g_1(\alpha_s\ln N) + g_2(\alpha_s\ln N) + \alpha_s g_3(\alpha_s\ln N) + \dots\right]$$

These terms are numerically large near the partonic threshold $x \rightarrow 1$ **(N** $\rightarrow \infty$ **)**, and thus their resummation **improves the perturbative expansion**, reduces scale uncertainties and allows to **construct approximate higher-order results**

Why threshold resummation?

Threshold resummation of partonic cross-sections extensively used in precision LHC pheno

Why threshold resummation?

Threshold resummation of partonic cross-sections extensively used in precision LHC pheno

PDFs with threshold resummation

To determine the relevance of calculations where resummation is included both for partonic matrixelements and the PDFs, we have produced for the first time **threshold-improved PDFs at NLO+NLL and NNLO+NNLL** using a **variant of the NNPDF3.0 fit**

Threshold-improved PDFs can differ substantially wrt fixed-order PDFs: **up to -20% for gg luminosity and -40% for quark-antiquark luminosity,** in the high-mass region relevant for new BSM heavy particles

Juan Rojo

PDFs with threshold resummation

The suppression observed at large-x in the resummed PDFs as compared to the FO ones can be traced back to the enhancement due to NLO+NLL used in the fit for DIS structure functions and DY distributions

 $\sigma_{\mathbf{N}^{j}\mathbf{LO}+\mathbf{N}^{k}\mathbf{LL}} = \sigma_{\mathbf{N}^{j}\mathbf{LO}} + \sigma_{\mathbf{LO}} \times \Delta_{j}K_{\mathbf{N}^{k}\mathbf{LL}}$

Phenomenologically most relevant: this suppression will partially or totally compensate enhancements in partonic cross-sections for new processes (SUSY, Higgs, ttbar differential)

х

Updated NLO+NLL cross-sections with NNPDF3.ONLO

Previous NLL-fast calculations at 13 TeV based on CTEQ6.6 and MSTW08 NLO sets
 NLL-fast version 3.1 has now been updated to NLO+NLL cross-sections with NNPDF3.0NLO

7

Updated NLO+NLL cross-sections with NNPDF3.ONLO

Frevious NLL-fast calculations at 13 TeV based on CTEQ6.6 and MSTW08 NLO sets

Markowski Markowski Markowski Ma Markowski Ma

Updated NLO+NLL cross-sections with NNPDF3.ONLO

Previous NLL-fast calculations at 13 TeV based on CTEQ6.6 and MSTW08 NLO sets
 NLL-fast version 3.1 has now been updated to NLO+NLL cross-sections with NNPDF3.0NLO

Juan Rojo

PDF4LHC, CERN, 26/10/2015

PDFs with threshold resummation

PDF uncertainties in high-mass SUSY cross-sections are very large!

 $|0\rangle$

This is because **large-x PDFs are being probed**, and these are affected by large errors due to the **lack of direct experimental constraints** (can be improved with Run-I and Run-II LHC data)

NLO+NLL susy xsecs with threshold-improved PDFs

☑ Now include the effect of NLO+NLL threshold-improved PDF

Y Problem is that **not all processes included in NNPDF3.0** can be consistently resummed, in particular **jets** and **charged current Drell-Yan** missing from NNPDF3.0 NLO+NLL fits

	Experiment	Observable	Ref.	NNPDF3.0 global	NNPDF3.0 DIS+DY+top
				(N)NLO	(N)NLO [+(N)NLL]
	NMC	$\sigma_{ m dis}^{ m NC}, F_2^d/F_2^p$	[124, 125]	Yes	Yes
	BCDMS	F_2^d, F_2^p	[126, 127]	Yes	Yes
	SLAC	F_2^d, F_2^p	[128]	Yes	Yes
	CHORUS	$\sigma_{\nu N}^{CC}$	[129]	Yes	Yes
	NuTeV	$\sigma_{\nu N}^{ m CC, charm}$	[130]	Yes	Yes
	HERA-I	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[131]	Yes	Yes
	ZEUS HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[132 - 135]	Yes	Yes
	H1 HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[136, 137]	Yes	Yes
	HERA charm	$\sigma_{ m dis}^{ m NC, charm}$	[138]	Yes	Yes
	DY E866	$\sigma_{ m DY,p}^{ m NC}, \sigma_{ m DY,d}^{ m NC}/\sigma_{ m DY,p}^{ m NC}$	[139–141]	Yes	Yes
	DY E605	$\sigma_{ m DY,p}^{ m NC}$	[142]	Yes	Yes
	CDF Z rap	$\sigma_{ m DY,p}^{ m NC}$	[143]	Yes	Yes
	CDF Run-II k_t jets	$\sigma_{ m jet}$	[144]	Yes	No
	D0 Z rap	$\sigma_{ m DY,p}^{ m NC}$	[145]	Yes	Yes
	ATLAS Z 2010	$\sigma_{ m DY,p}^{ m NC}$	[146]	Yes	Yes
	ATLAS W 2010	$\sigma_{ m DY,p}^{ m ec}$	[146]	Yes	No
	ATLAS 7 TeV jets 2010	$\sigma_{ m jet}$	[147]	Yes	No
	ATLAS 2.76 TeV jets	$\sigma_{ m jet}$	[148]	Yes	No
	ATLAS high-mass DY	$\sigma_{ m DY,p}^{ m NC}$	[149]	Yes	Yes
	ATLAS $W p_T$	$\sigma^{ m CC}_{ m DY,p}$	[150]	Yes	No
	CMS W electron asy	$\sigma_{ m DY,p}^{ m CC}$	[151]	Yes	No
_	CMS W muon asy	acc Dy,p	[152]	Yes	No
	CMS jets 2011	$\sigma_{ m jet}$	[153]	Yes	No
	CMS W + c total	$\sigma_{ m DV, charm}^{ m NC, charm}$	[154]	Yes	No
	CMS 2D DY 2011	$\sigma_{ m DY,p}^{ m NC}$	[155]	Yes	Yes
	LHCb W rapidity	$\sigma_{ m DY,p}^{ m CC}$	[156]	Yes	No
	LHCb Z rapidity	$\sigma_{ m DY,p}^{ m NC}$	[157]	Yes	Yes
	ATLAS CMS top prod	$\sigma(t\bar{t})$	[158-163]	Yes	Yes

NLO+NLL susy xsecs with threshold-improved PDFs

☑ Now include the effect of NLO+NLL threshold-improved PDF

M Problem is that **not all processes included in NNPDF3.0** can be consistently resummed, in particular **jets** and **charged current Drell-Yan** missing from NNPDF3.0 NLO+NLL fits

✓ Prescriptions needed to combine NNPDF3.0NLO (global, fixed-order fit) with NNPDF3.0NLL (reduced dataset, resummed)

NLO+NLL SUSY xsecs with threshold-improved PDFs

☑ Now include the effect of NLO+NLL threshold-improved PDF

Substantial shift, **changes qualitatively and quantitatively** the behaviour of NLO+NLL SUSY xsecs

Shift within total theory band, so **current exclusion limits unaffected**

M But would become crucial if we ever need to **characterise SUSY particles from LHC data**, much in the same way as in the **Higgs sector**

NLL-fast grids

✓ The updated NLO+NLL squark and gluino production cross-sections at the LHC 13 TeV using NNPDF3.0 can be downloaded from the NLL-fast collaboration webpage

Markov Include a **complete characterisation of theory uncertainties** from PDFs, scales and strong coupling

http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast

Squark and gluino production:

- Squark and Gluino Production at Hadron Colliders, W. Beenakker, R. Höpker, M. Spira, P.M. Zerwas, Nucl. Phys. B492 (1997) 51-103
- Threshold resummation for squark-antisquark and gluino-pair production at the LHC, A. Kulesza, L. Motyka, Phys. Rev. Lett. 102 (2009) 111802
- Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, A. Kulesza, L. Motyka, Phys. Rev. D80 (2009) 095004
- Soft-gluon resummation for squark and gluino hadroproduction, Wim Beenakker, Silja Brensing, Michael Krämer, Anna Kulesza, Eric Laenen, Irene Niessen, JHEP 0912 (2009) 041
- Squark and gluino hadroproduction, W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Int. J. Mod. Phys. A26 (2011) 2637-2664

Stop (sbottom) production:

- Stop Production at Hadron Colliders, W. Beenakker, M. Krämer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B515 (1998) 3-14
- Supersymmetric top and bottom squark production at hadron colliders, Wim Beenakker, Silja Brensing, Michael Krämer, Anna Kulesza, Eric Laenen, Irene Niessen, JHEP 1008(2010)098
- Squark and gluino hadroproduction, W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Int. J. Mod. Phys. A26 (2011) 2637-2664

When using NLL-fast version 3.1, please additionally cite:

• NLO+NLL squark and gluino production cross-sections with threshold-improved parton distributions, W. Beenakker, C. Borschensky, M. Krämer, A. Kulesza, E. Laenen, S. Marzani, J. Rojo

Code

Downloads

NEW: NLL-fast, version 3.1 (LHC @ 13 TeV)

- Main program and grids in one package nllfast-3.1. For grids for stop/sbottom production SUSY parameters other that stop/sbottom masses correspond to CMSSM benchmark point 40.2.5 at
- This version of NLL-fast is an update of version 3.0, now also including predictions with the NNPDF3.0NLO (NNPDF3.0LO for LO) set.
- Please note that the output format for the NNPDF predictions is slightly different, as the PDF and AlphaS error are already given in a combined format.

In addition, **cross-sections using the threshold-improved NNPDF3.0** sets is available from the authors upon request.

Mathematical Second Se