PDF uncertainties on mw

M. Vesterinen
Physikalisches Institut Heidelberg

Work done in collaboration with G. Bozzi, L. Citelli, A. Vicini

27th October 2015

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung / Foundation

Why measure mw?

Indirect search for new physics in radiative corrections

Global EW fit and mw

Thus, room for new physics

State of the art, direct

Still to come: full Tevatron Run-II dataset and LHC!

Natural target: the indirect constraint (< 10 MeV)

Hadron collider method

Compare distributions of the charged lepton p_T , missing E_T , and transverse mass to QCD templates

It is likely that the LHC experiments will focus on the charged lepton p_T which is less affected by pileup.

Uncertainties, Tevatron

With ~1/4 of the CDF dataset:

Phys. Rev. Lett. 108, 151803

TABLE II. Uncertainties for the final combined result on M_W .

Source	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal	2
Backgrounds	3
$p_T(W)$ model	5
Parton distributions	10
QED radiation	4
W-boson statistics	12
Total	19

Are PDFs going to be the limiting uncertainty? Especially at the LHC...

Flavour composition

A much discussed problem

- ...
- Krasny et al., EPJC 69 379-397 (2010)
- Bozzi et al., PRD 83:113008 (2011)
- Rojo et al., [309.[3]] (2013)
- ATL-PHYS-PUB-2014-015
- Bozzi et al., | 50|.05587 (20|5)
- Quackenbush et al., PRD 92, 033008 (2015)

• ...

Example of charged lepton pt fit

With the previous PDF4LHC recommendations (1101.0538), they estimate a 20-30 MeV uncertainty for the LHC measurements

Example of charged lepton pt fit

Factor of \sim 2 smaller with p_T(W) < 15 GeV, but still preventing our < 10 MeV goal.

Cause of PDF uncertainty

Polarisation

 Valence quark PDFs polarise the Ws, which affects the final state particle distributions that we fit for m_W.

Acceptance

• Due to the limited angular acceptance of the detectors, a change in the rapidity distribution will sculpt the p_T and m_T distributions.

Mika Vesterinen I I

Acceptance

 $|\eta_{lept}| < 2.5$

Acceptance

 $|\eta_{lept}| < 2.5 + 2 < \eta_{lept} < 5$

$W \rightarrow \mu \nu @ LHCb$

See Will Barter's CERN seminar today

Latest LHCb measurements of Electroweak Boson Production in Run-1

We present the latest LHCb measurements of forward Electroweak Boson Production using proton-proton collisions recorded in LHC Run-1. The seminar shall discuss measurements of the 8 TeV W & Z boson production cross-sections. These results make use of LHCb's excellent integrated luminosity determination to provide constraints on the parton distribution functions which describe the inner structure of the proton. These LHCb measurements probe a region of phase space at low Bjorken-x where the other LHC experiments have limited sensitivity. We also present measurements of cross-section ratios, and ratios of results in 7 TeV and 8 TeV proton-proton collisions. These results provide precision tests of the Standard Model.

The seminar shall also present a measurement of the forward-backward asymmetry (A_FB) in Z boson decays to two muons. This result allows for precision tests of the coupling of the Z boson to left and right handed particles, providing sensitivity to the effective weak mixing angle (sin^2(theta_W^eff)). The A_FB distribution visible in the LHCb acceptance is particularly sensitive to sin^2(theta_W^eff), as the forward phase-space means that the initial state quark direction is better known than in the central region. This reduces theoretical uncertainties in extracting sin^2(theta_W^eff) from A_FB, and allows LHCb to make the currently most precise determination of sin^2(theta_W^eff) at the LHC.

Extending...

- ..the (Bozzi et al, 1501.05587) study to include LHCb
- It only considers the charged lepton p_T , which is anyway the only observable that is available to LHCb.

Define:

"GPD"	Charged lepton: $p_T > 25$ GeV, $l\eta l < 2.5$ Neutrino: $p_T > 25$ GeV $p_T(W) < 15$ GeV
LHCb	Charged lepton: $p_T > 20$ GeV, $2 < \eta < 4.5$

Technicalities

- Simulate pp → W → Iv @ I3 TeV using POWHEG
 +PYTHIA and [NNPDF3.0, MMHT2014, CT10]
- Produce a lepton p_T template with a given PDF set and m_W and call this the "pseudo-data".
- Compare it to templates with different mw values and find the best fit.
- Repeat with different PDF sets for the pseudo-data.

PDF uncertainties

Using the prev. PDF4LHC prescription (1101.0538):

	GPD W+	GPD W ⁻	LHCb W+	LHCb W-
m _W envelope (MeV) [NNPDF3.0, MMHT2015, CT10]	30 MeV	24 MeV	35 MeV	84 MeV
m _W envelope (MeV) [NNPDF3.0, MMHT2015]	25 MeV	13 MeV	27 MeV	50 MeV

LHCb has larger uncertainties due to poorer known densities at low/high-x, and the inability to cut on the recoil p_T .

It gets interesting when we consider correlations...

Correlations

As expected, we see a large anti-correlation between the GPD and LHCb uncertainties.*

Q: What happens to the LHC average?

LHC average?

Four measurements*

G=GPD, L=LHCb

$$\delta_{\text{PDF}} = \begin{pmatrix} \mathbf{G}^{+} & 24.8 \\ \mathbf{G}^{-} & 13.2 \\ \mathbf{L}^{+} & 27.0 \\ \mathbf{L}^{-} & 49.3 \end{pmatrix} \qquad \rho = \begin{pmatrix} \mathbf{G}^{+} & \mathbf{G}^{-} & \mathbf{L}^{+} & \mathbf{L}^{-} \\ \mathbf{G}^{+} & 1 & & \\ \mathbf{G}^{-} & -0.22 & 1 \\ \mathbf{L}^{+} & -0.63 & 0.11 & 1 \\ \mathbf{L}^{-} & -0.02 & -0.30 & 0.21 & 1 \end{pmatrix}$$

Average

	δmw	Weight in average				
Scenario	PDF envelope of NNPDF3.0, MMHT14	G ⁺	Ġ	÷	L	
GPD only	10.5 MeV	26%	74%			
GPD + LHCb	7.7 MeV	30%	45%	21%	4%	

LHC average?

PDFs	Experiments	$\delta_{\mathrm{PDF}} \; (\mathrm{MeV})$	$\mid \alpha \mid$
PDF4LHC(2-sets) PDF4LHC(2-sets)	$\begin{vmatrix} 2 \times \text{GPD} \\ 2 \times \text{GPD} + \text{LHCb} \end{vmatrix}$	10.5 7.7	$ \begin{array}{ c c c }\hline (0.26, 0.74, 0, 0) \\ (0.30, 0.45, 0.21, 0.04) \\ \hline \end{array}$
PDF4LHC(3-sets) PDF4LHC(3-sets)	$ \begin{array}{ c c } \hline 2 \times \text{GPD} \\ 2 \times \text{GPD} + \text{LHCb} \\ \hline \end{array} $	16.9 12.7	
NNPDF30 NNPDF30	$\begin{array}{ c c }\hline 2\times GPD \\ 2\times GPD + LHCb \\ \end{array}$	5.2 3.6	
MMHT2014 MMHT2014	$\begin{array}{ c c }\hline 2\times GPD \\ 2\times GPD + LHCb \\ \end{array}$	9.2	
CT10 CT10	$ \begin{array}{ c c } \hline 2 \times \text{GPD} \\ 2 \times \text{GPD} + \text{LHCb} \\ \hline \end{array} $	11.6 6.3	

Whichever set or sets of PDFs are considered, LHCb has a > 30% impact on the PDF uncertainty

LHCb sensitivity

Scale the same templates to the expected yields in the full Run-II dataset (take lower end of 7-10 fb⁻¹ projection)

Statistical precision:

W⁺: 9 MeV

W: 12 MeV

Sufficient Z and Y samples to control momentum scale uncertainty to around 4 MeV

LHC average

Assumption: ATLAS and CMS each measure m_W with 7 MeV precision for each charge, with 50% +ve correlation between charges. (CMS-NOTE-2006-061, EPJ C57:6270651 (2008))

Total* uncertainty on LHC average

	δm _w (MeV)	Weight in average				
Scenario	PDF envelope of NNPDF3.0, MMHT14	G+	G-	L+	L.	
2 x GPD	13.1 (6.0 _{exp} ,11.6 _{PDF})	22%	78%			
1 x GPD + LHCb	10.9 (6.6 _{exp} , 8.7 _{PDF})	26%	44%	25%	5%	
2 x GPD + LHCb	9.8 (4.7 _{exp} , 8.6 _{PDF})	25%	48%	22%	4%	

- *Caveat: don't yet address an important source of uncertainty in the W p_T model (±5 MeV for CDF/D0).
- Nevertheless, it seems clear that LHCb should make a direct measurement of mw.

Summary/outlook

- PDFs may be the key challenge in improving our direct constraint on m_W.
- LHCb can help by making a direct m_W measurement (1508.06954).

Backup slides

Many other scenarios

		$\delta m_W \; ({ m MeV})$			
Scenario	Experiments	Tot	Exp	PDF	α
Default	$2 \times \text{GPD} + \text{LHCb}$	9.0	4.7	7.7	(0.30, 0.44, 0.22, 0.04)
Default	$1 \times \text{GPD} + \text{LHCb}$	10.1	6.5	7.7	(0.31, 0.40, 0.25, 0.04)
Default	2×GPD	12.0	5.8	10.5	(0.28, 0.72, 0, 0)
PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$	13.6	4.8	12.7	(0.43, 0.41, 0.12, 0.04)
PDF4LHC(3-sets)	$1 \times \text{GPD} + \text{LHCb}$	14.6	7.3	12.7	(0.43, 0.40, 0.12, 0.04)
PDF4LHC(3-sets)	2×GPD	17.7	5.5	16.9	(0.50, 0.50, 0, 0)
$\delta_{ m exp}^{ m LHCb}=0$	$2 \times \text{GPD} + \text{LHCb}$	8.7	4.0	7.7	(0.31, 0.41, 0.24, 0.04)
$\delta_{\rm exp}^{\rm LHCb}=0$	$1 \times \text{GPD} + \text{LHCb}$	9.8	5.9	7.9	(0.31, 0.37, 0.28, 0.04)
$\delta_{\rm exp}^{\rm LHCb} = 0$	2×GPD	12.0	5.8	10.5	(0.28, 0.72, 0, 0)
$\delta_{\mathrm{exp}}^{\mathrm{GPD}} = 0$	$2 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7.7	(0.29, 0.48, 0.19, 0.04)
$\delta_{\rm exp}^{\rm GPD} = 0$	$1 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7.7	(0.29, 0.48, 0.19, 0.04)
$\delta_{\mathrm{exp}}^{\mathrm{GPD}} = 0$ $\delta_{\mathrm{exp}}^{\mathrm{GPD}} = 0$	2×GPD	10.5	0.1	10.5	(0.26, 0.74, 0, 0)
$\delta_{\rm PDF} = 0$	$2 \times \text{GPD} + \text{LHCb}$	4.6	4.6	0.0	
$\delta_{\mathrm{PDF}} = 0$	$1 \times \text{GPD} + \text{LHCb}$	5.8	5.8	0.0	(0.23, 0.23, 0.37, 0.17)
$\delta_{\mathrm{PDF}} = 0$	2×GPD	5.5	5.5	0.0	(0.50, 0.50, 0, 0)
$\delta_{ m exp}^{ m LHCb} imes 2$	$2 \times \text{GPD} + \text{LHCb}$	9.6	5.6	7.7	(0.29, 0.50, 0.17, 0.04)
$\delta_{\rm exp}^{ m LHCb} imes 2$	$1 \times \text{GPD} + \text{LHCb}$	10.8	7.6	7.7	(0.30, 0.46, 0.20, 0.05)
$\delta_{\mathrm{exp}}^{\mathrm{LHCb}} imes 2$	2×GPD	12.0	5.8	10.5	(0.28, 0.72, 0, 0)
$\delta_{ m exp}^{ m GPD} imes 2$	$2 \times \text{GPD} + \text{LHCb}$	11.2	7.9	8.0	
$\delta_{\mathrm{exp}}^{\mathrm{GPD}} \times 2$	$1 \times \text{GPD} + \text{LHCb}$	13.9	10.5	9.0	(0.31, 0.26, 0.37, 0.05)
$egin{aligned} \delta_{\mathrm{exp}}^{\mathrm{GPD}} imes 2 \ \delta_{\mathrm{exp}}^{\mathrm{GPD}} imes 2 \end{aligned}$	2×GPD	15.6	11.5	10.6	(0.32, 0.68, 0, 0)
$\delta_{\mathrm{PDF}} imes 2$	$2 \times \text{GPD} + \text{LHCb}$	16.0	4.7	15.3	
$\delta_{\mathrm{PDF}} imes 2$	$1 \times \text{GPD} + \text{LHCb}$	16.7	6.7	15.3	(0.30, 0.44, 0.22, 0.04)
$\delta_{\mathrm{PDF}} imes 2$	$2 \times \text{GPD}$	21.7	5.9	20.9	(0.27, 0.73, 0, 0)

W pt model

- At the Tevatron, we tuned the W p_T model on Z data, giving a 5 MeV uncertainty on the lepton p_T fit.
- Does this really cover all the full PQCD uncertainty? At the LHC, this is complicated by the flavour composition and interplay with PDFs.

Indirect Higgs mass constraint

Direct measurement!