Time-Projection-Chamber for MPD NICA

Stepan Razin On behalf of the TPC team

Laboratory of High Energy Physics, JINR, Dubna

NICA Days 2015

TPC TDR rev.02

TPC/MPD Collaboration JINR Dubna, April 2015, rev.02

CONTENTS

Time Projection Chamber for

Multi Purpose Detector at NICA

Technical Design Report (rev.02)

Laboratory of High Energy Physics, JINR, Dubna

A.Averyanov, A.Bajajin, V.F.Chepumov, V.V. Chepumov, G.Cheremukhina, S.Cherenko, O.Fateev, Yu.Kiriushin, A.Korotkova, F.Levchanovskiy, J.Lukstins, S.Movchan, S.Razin, A.Ribakov, V.Samsonov, S.Vereschagin, Yu.Zanevsky, S.Zaporozhets and V.Zruyev

http://nica.jinr.ru/files/mpd_tdr.htm and select <u>MPD Time Projection Chamber</u> <u>Technical Design Report</u> (pdf)

Dubna 2015

Acknowledgementsi
Summaryiii
1. Physics requirements
2. TPC design overview
3. TPC field cage and HV electrode
4. TPC readout chambers11
5. TPC laser calibration
6. TPC cooling system
7. TPC gas system
7.1 Design
8. Front-end electronics
8.1 General requirements
8.2 Front-end card
8.3 Controller RCU
9. TPC prototyping
10. TPC assembly hall
11. Time schedule and Cost book
12. List of Appendices
References

CONTENTS

- TPC design overview
- Field cage and central cathode plane
- TPC readout chamber (ROC)
- Front-End electronics (FEE)
- TPC laser calibration
- Gas system
- Cooling system
- Conclusion

-efficient tracking up to pseudorapidity region lηl=1.2

 the momentum resolution for charge particles ~2% at the transverse momentum of 300 Mev/c

- the two-track resolution has to be about 1 cm

- a dE/dx resolution better than 8% is desirable for hadron and lepton identification

A design luminosity - 10^{27} cm⁻² s⁻¹ for Au+Au collisions Interaction rate ~ 7 kHz

Time Projection Chamber Design

- Track points recorded in 3-D
 (x, y, z)
- Particle Identification by dE/dx
- Large track densities possible

- Only gas in active volume, small amount of material
- Long drift (~ 1.5 m) therefore slow detector (~30 μs) no impurities in gas uniform E-field strong & uniform B-field

3-D coordinates

- Z coordinate from drift time
- X,Y coordinates from pads Amplitude on ith pad

$$A_{i} = Ae^{(-(y-y_{i})^{2}/2\sigma_{prw}^{2})}$$

- \boldsymbol{y} avalanche position
- y_i position of center of ith pad
- $\sigma_{_{prw}}$ pad response width
- Measure A_i
- Invert equation to get y

Basic parameters of the TPC:

TPC length – 340cm Outer radius – 140cm Drift volume outer radius – 133cm Inner radius – 27cm, Drift volume inner radius – 34cm Length of drift volume – 170cm Electric field strength – 140V/cm Magnetic field strength – 0.5 Tesla Drift gas – 90% Argon + 10% Methane Readout: 2x12 sectors (MPWC cathode pads Number of pads ~ 100000 Pad size – 5x12mm, 5x18mm

Low material budget in barrel part, max. transparency for forward tracking Small distortions, $B_r/B_z < 5*10^{-4}$

Fig. 2b. The front view of the TPC

Main characteristics of TPC

Корпус ТРС/ MPD

Item	Dimension
Length of the TPC	340cm
Outer radius of vessel	140cm
Inner radius of vessel	27 cm
Outer radius of the drift	133cm
volume	
Inner radius of the drift	34cm
volume	
Length of the drift	170cm (of each half)
volume	
HV electrode	Membrane at the center of the TPC
Electric field strength	~140V/cm;
Magnetic field strength	0.5 Tesla
Drift gas	90% Ar+10% Methane, Atmospheric pres.
	+ 2 mbar
Gas amplification factor	~ 10 ⁴
Drift velocity	5.45 cm/µs;
Drift time	< 30µs;
Temperature stability	< 0.5°C
Number of readout	24 (12 per each end-plate)
chambers	
Segmentation in ϕ	30°
Pad size	5x12mm ² and 5x18mm ²
Number of pads	95232
Pad raw numbers	53
Pad numbers after zero	< 10%
suppression	
Maximal event rate	< 7 kHz (Lum. 10 ²⁷)
Electronics shaping time	~180 ns (FWHM)
Signal-to-noise ratio	30.1
Signal dynamical range	10 hite
Signal uynanncar i allge	10 0113
Sampling rate	10 MHz
Sampling depth	310 time buckets

Gas tight containment cylinders C1-C4 production in Russian industry

- Material : Kevlar
- Thickness: 4 mm
- Length: 3.4 m
- Diameter: 2.8 m
- Deformation in operational position is less than 100 mkm

Uniform E-field creation system

The non uniformity of the electric field inside the sensitive TPC volume has to be not more than 10⁻⁴ relative to nominal value (140V/cm P10 gas mixture)

TPC Readout

Readout Chambers

The wire chamber sectors (30° in azimuth) are mounted on each side of cylinder, on the end-cap wheels. In total - 24 chambers.

The overall area to be instrumented is ~ 8,0 m². The chambers will be conventional multiwire proportional chambers with cathode pad readout. To keep the occupancy as low as possible and to ensure the necessary dE/dx and position resolution, there will be ~ 100 000 readout pads with two different sizes varying from 0.5 cm² near the inner radius to 1.0 cm² near the outer radius.

Allison and Cobb relation

$$\frac{\Delta dE/dx}{dE/dx} = \frac{0.96}{2.35} N^{-0.46} l^{-0.32}$$

$$dE/dx \sim 7\% \iff \begin{array}{l} \text{number } N = 40 \text{ of pad rows} \\ l = 1.2 \text{ cm the plength} \end{array}$$

16% tracks occupy the about 10 cm area around the inner field cage wall

At least 41 rows of 12mm length has to be in the pad plane area

at $\sqrt{s_{NN}} = 9 \, GeV$

NICA Days 2015

Readout chamber

Structure of readout chamber:

- three wire planes
- pad plane
- insulation plate
- trapezoidal aluminum frame

Pad structure

pad raw number 53 rectangle shape

- small pads 5×12 mm²
- large pads 5×18 mm²

Wires structure

- anode wire pitch 3 mm
- cathode wire pitch 1,5 mm
- gate wire pitch 1 mm
- wires gap 3 mm

NICA Days 2015

12

ROC chamber and Pad-plane status

Design of Read-Out Chamber (ROC) is defined

Structure of Readout Chamber:

- three wire planes
- pad plane
- insulation plate
- trapezoidal aluminum frame

Wire structure:

- anode wire $(\emptyset=25 \ \mu m)$ pitch 3 mm
- cathode wire (Ø=75 µm) pitch 1.5 mm
- gate wire (Ø=75 µm) pitch 1 mm
- wires gap 3 mm

Pads:

- rectangular shape
- 27 rows of pad with size 5x12 mm² at inner area
- 26 rows of pad with size 5x18 mm² at outer area

Two prototypes of read-out chamber were constructed and tested

Serial read-out chamber (ROC) is designed and two prototypes are under construction

Pad-plane printed circuit board is developed and given into manufacture

TPC Laser Calibration System

In order to minimize the error in the absolute position measurement by TPC, it is necessary to take into account both static and time-dependent distortions in the drift path of the ionization cloud. A calibration system that can reproduce fiducial tracks is needed to monitor the TPC performance. This calibration system will be based on the UV laser.

Status of TPC calibration system

2 lasers are ordered

Set of mirrors

300 mirrors are ordered

Prototyping and design – in progress

TPC cooling system

NICA Days 2015 17

Temperature Monitoring

Sensors: **blue** – on the field cage, **red** on the chambers

Location	Outer Field cage	Inner Field cage	ROC modules
Number of the sensors	72	36	72
		NI	CA Days 2015

Status design of cooling system

Weight ~ 2.7 kGin progress ...Weight+H2O ~ 3 kG48 cooling plates (48*3) ~ 144 kGOption 1: 48 cooling plates + steel supports (144+14*22) ~ 452 kGOption 2: 48 cooling plates + Al supports (144+14*7.3) ~ 246 kG

Ζ

(mm)

0.4

19

TPC gas system

Requirements

90%Ar+10%CH₄

The drift volume is 18500 liters, the insulating gaps – 4800 liters

Hermetically closed-loop gas circulation system

Dryer and purification in return line Continuous monitoring of gas gain and drift velocity – gas chromatograph

Gas mixture temperature control - 0.5 K

Internal TPC overpressure – not more 2 mbar Recirculation flow - $3.8 \text{ m}^3/\text{h}$

TPC gas system

Gas system technical design report is complete, the system is under construction. It will be ready in 2017. NICA Days 2015

21

Trigger rate - N=7 kHz

hit size per track - 3.0 kB

- signal shape 5 byte/ch
 (3 ADC*10bit + time(10bit))
- per 1 "hit" on track 5byte/ch* 6 pads
 = 30 byte
- per track 30x53(R-коор.) = 1.6 kByte up to 30x(53R+75φ)= 3.9 kByte

max rate per half TPC: 15 GB/sec 3.0*10³ Byte x 500 tracks = 1.5 MB per ~ 100 μsec

TPC total data rate: 30 GB/sec

TPC data rate: max - **30 GB/sec** (1000 tracks per 100 μsec)

average - **10 GB/sec** (2.5*10⁶ tracks/sec (350 tracks per 100 μsec))

Occupancy (for 1000 tracks). ~ 10 %

ROC chamber:						
Each RCU output link speed						
Max	- 11.2 Gbit/sec					
average	– 4 Gbit/sec	- OK!				
FE-RCU (62 pc FE	per ROC chamber):	Î				
Each FE-RCU link speed:						
max	- 180 Mbit/sec	- OK!				
average	 – 65 Mbit/sec 					

22

TPC electronics

Parameter	Value
Total number of channels	95 232
Signal to noise ratio, S/N	> 30:1 @ MIP ($\sigma_{noise} < 1000e^{-}$)
Dynamic Range	1000 (10 bits sampling ADC)
Shaping time	190 ns
Sampling	10 MHz
Tail cancellation	< 1% (after 1 µs)
Zero-suppression	up to 90%
Bandwidth	up to 10 GB/s @ TPC
Power consumption	100 mW/ch

FE electronics based on PASA and ALTRO ASICs

RCU controller

FE card prototype (FEC-64)

♦ 64 channels
 ♦ Signal to noise ratio, S/N – 30
 ♦ $σ_{NOISE} < 1000e^-$ (C=10-20 pF)
 ♦ Shaping time - 180-190 ns

Top view

Sampling clock - 0.5 - 25 MHz
 ALTRO bus speed 200 MB/s
 USB speed ~ 30 MB/s
 Dimensions - 100 x 170 mm²

NICA Days 2015

- ✓ TPC FE electronics concept done
- Engineering & Construction of the 64-Channel Front-End Card based on the 16-channel analog-todigital ASIC ALTRO (Prototype FEC64) - done
- ✓ **FEC64 Software** for study ASIC ALTRO functioning and debugging of FPGA digital logics **done**
- Testing of some FEC64 with Pulse Generator and on the TPC-prototype Readout Chamber with Fe-55 - complete
- ✓ Engineering & Construction and Test of the serial 64-Channel Front-End Card FEC64S in progress
- ✓ Engineering of the Readout Controller RCU in progress
- ✓ Creation of the FEC64S Testing System based on the development kit 'Cyclone-5 SoC' in progress

TPC assembly

Tools for TPC assembling

Status: under design

ROC chamber assembly hall

Test set up

Soldering

Time schedule

	Item	Date
1	Assembly TPC cylinders C1+C2	December 2015
2	TPC assembly hall ready	June 2016
3	TPC assembly (C1-C4 + HV electrode + field cage + 2 flanges)	December 2017
4	ROC chamber manufacture (26 pc)	2016 - 2017
5	Assembly ROC chamber (24pc) to TPC	Jan-June 2018
6	TPC electronics manufacture (FEC64S and RCU)	May 2018
7	Assembly FEC64S to ROC chamber	Sept- Dec 2018
8	TPC test with cosmic and laser calibration system	2018-July 2019
9	TPC transportation from Bld.217 to the MPD hall	August 2019
10	Installation TPC to MPD	Sept 2019
11	TPC gas and cooling systems assembly in the MPD hall	Jan – Sept 2019
12	TPC test inside MPD	Oct–Dec 2019 - 2020

Thank you for attention

Welcome to joint us for design and experiments at NICA accelerator complex with MPD

SPARE Slides

(TPC + termoscreen) radiation length

	Base line option			Upgrade	5. Epoxy glue	0.056	5. Epoxy glue	0.056
	for	for			(2x0.1mm)		(2x0.1mm)	
	η = 0	η = 1.31						
Air (beam	0.073	0.146				0.02		0.02
pipe-C1)					Air gap L=10 cm	0.03	Air gap L=10 cm	0.03
h=220 mm								
TPC shielding	0.11	0.22			ROC sum:	9.34	ROC sum:	~2.5 -
Al, h=0.1 mm								3.72
C1	0.80	1.6						
h=3 mm								
N ₂ (gap C1-C2)	0.02	0.04			FE (62 FE boards)		FE (based on SAMPA	
h=63 mm							chip)	
C2	0.8	1.6			PCB+components ,	21.13	all FE – single layer	1.0
h=3 mm					21 kG		FE - 4 layers	5.0
sum:	1.803	3.6						
TPC gas	1.171	0.984						
mixture		(L=1260			FE Cooling		FE Cooling	
L=1500 mm		mm)			Cu radiators +	36.00	Al pipes + plates on	2.5
sum:		4.6		4.6	H ₂ O ,		chips	
ROC			ROC		14.4kG			
1. Wires+gas	0.08		1.4 GEM foils	0.32				
			Cu, 8x5μm=40 μm			10.0		NO
			Kapton 4x50µm =200		Service wheel SSW	13.3		NO
			μm		Al, 10 kG			
2. Pad plane	2.00		2. Pad plane	1.00				
h=3 mm			h=1.5 mm		TPC termoscreen	1.69	TPC termoscreen	1.69
3. Insulating	1.55		3. Insulating plate	0.775	$Al + H_2O, h=1.5$		$Al + H_2O$, h=1.5 mm	
plate			h=1.5 mm		mm		2 /	
h=3 mm								
4. Al frame	5.62		4. Carbon panel	0.30				
h=5 mm			h=25 mm		Summary:	<mark>~86.1</mark>		<mark>~17.5</mark>

S.Movchan MPD/NICA TPC status Gomel school-conference - 2015

ENERGY LOSS

10 10(9 8 80 Ρ 7 dE/dx (keV/cm) 6 60 **PID:** Ionization loss (dE/dx) 5 Separation: 4 40 e/h – 1.3..3 GeV/c 3 π/K – 0.1..0.6 GeV/c π K/p – 0.1..1.2 GeV/c 2 20 1 0≟ -3 0 -2 3 -1 0 2 1 Rigidity (GeV/c)

E = 9 GeV, 2000 events, UrQMD

The energy loss distribution in the MPD TPC

Light nuclei in TPC

TPC FEE input full scale amplifier ~ 250 fC It is ~ 30-40 MIP energy loss

> QGSM Au+Au central collision 9 GeV, b=1fm

TPC / MPD

Two-track resolution: The two-track resolution has to be such that HBT measurements with a resolution in relative momentum of a few (~ 5) MeV/*c* can be performed. This may require running at higher magnetic fields. Two Track resolution ~1 cm is expected.

Resolution dE/dx: For hadron identification dE/dx resolution of 8% is desirable, following the experience of NA49. Depending on the final particle multiplicity this can just be reached with the current design.

Figure 3.35: dE/dx resolution as a function of the number of samples in the NA35 TPC. Sample length 4 cm, gas Ar/CH₄ (91/9).

TPC deformation

TPC assembly must be done very carefully

TPC integration to MPD (similar to ALICE design)

Laser calibration system – in progress

Fig. 46. Overview of the optical elements to guide the laser beam from the laser to the entrance windows in the TPC field cage. The A side system is shown; the C side system is obtained by mirror symmetry in a vertical plane along the TPC axis.

TPC alignment marks – not started

Figure 4.38: Reference marks distributed along the outer and inner circumference of the end-plate allow the orientation and planarity of the end-plate to be surveyed via photogrammetry.

TPC FE integration: service wheel (SSW) – design started

