Thermalization, evolution and observables
In Integrated hydrokinetic model of A+A

!'_ collisions

Yu. Sinyukov, BITP, Kiev

NICA DAYS in WARSAW 2015
&

X1 Workshop on Particle Correlations and Femtoscopy (WPCF 2015)



Integrated HydroKinetic model: HKM — IHKM

t Complete algorithm incorporates the stages:

e generation of the initial states;

e thermalization of initially non-thermal matter;
HADRON CASCADE

(UrQMD) e viscous chemically equilibrium hydrodynamic
expansion;
t , e sudden (with option: continuous) particlization
Tsw T, ~165 MeV of expanding medium;

® a switch to UrQMD cascade with near
equilibrium hadron gas as input;

® simulation of observables.
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Initial states

The most commonly used models of initial state are:
High Energies

MC-G (Monte Carlo Glauber)

MC-KLN (Monte Carlo Kharzeev-Levin-Nardi)
EPOS (parton-based Gribov-Regge model)
EKRT (perturbative QCD + saturation model)
IP-Glasma (Impact Parameter dependent Glasma)

Low Energies

MC-G (Monte Carlo Glauber) - ?
UrQMD (Ultra-Relativistic Molecular Dynamics) - ?

PROBLEM:

No one model leads to the proper matter thermalization,
while
the biggest experimental discovery for a few decades is that hydrodynamics is
the basis of the “Standard Model “ of high energy A+A collisions



MC-G Initial State (IS) attributed to7o = 0.1 fm/c
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ultiplicity dependence of all charged particles on centrality
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parameter values : 7o = 0.1 fm/c, 7.; = 0.25 fm/c, n/s = 0.08, A = 100



Pre-thermal stage (thermalization)

Akkelin, Yu.S. :PRC 81 (2010); Naboka, Akkelin, Karpenko, Yu.S. : PRC 91 (2015).

Non-thermal state 79 = 0.1 fm/c — locally near equilibrated state Tth = 1 fm/c
to

Boltzmann equation in Py (z,p) = eXp(—/ di
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The other stages: Hydro evolution, particlization, hadronic
cascade

" Hydro evolution: T < Teh T (x) = T ()P (1) + Tigq(2) (1 = P(7)) = Thgq(x)

| | no |
IC is the result of pre-thermal = (€nya (%) + prya(x) 4 Tty (Ot ()
evolutuon reached at 7 — (Phya(x) + Mg + 7',

Solving of Israel-Stewart Relativistic Viscous Fluid Dynamics with I1 =0



The other stages: Hydro evolution, particlization, hadronic
cascade

" Hydro evolution: T < Teh T (x) = T ()P (1) + Tigq(2) (1 = P(7)) = Thgq(x)

= (Ghyd(«’f) + Phyd(v’f) + H)”hyd(x)uﬁyd(x)
— (phya(x) + IDHg"" + 7.

Solving of Israel-Stewart Relativistic Viscous Fluid Dynamics with I1 =0

at the isotherm hypersurface T=165 MeV

7 Lo atinm-
Particlization: ‘ |
energy density e = 0.5 GeV/fm? for the Laine-Schroeder EoS

Switching hypersurface build with help of Cornelius routine.

For particle . » _—
distribution the Grad'’s d’AN; _ Aaﬂp D2 fe (p*o T, u) 1+ (1F f,) PP,
14 momentum ansatz @P*d(cosd)do 272 (e +p)

IS used:



The other stages: Hydro evolution, particlization, hadronic
cascade

" Hydro evolution: T < Teh T (x) = T ()P (1) + Tigq(2) (1 = P(7)) = Thgq(x)

= (Ghyd(«’f) + Phyd(v’f) + H)”hyd(x)uﬁyd(x)
— (phya(x) + IDHg"" + 7.

Solving of Israel-Stewart Relativistic Viscous Fluid Dynamics with I1 =0

at the isotherm hypersurface T=165 MeV

7 Lo atinm-
Particlization: ‘ |
energy density e = 0.5 GeV/fm? for the Laine-Schroeder EoS

Switching hypersurface build with help of Cornelius routine.

For particle . » _—
distribution the Grad'’s d’AN; _ Aaup D2 fe (p*o T, u) 1+ (1F f,) PP,
14 momentum ansatz @P*d(cosd)do 272 (e +p)

IS used:

" Hadronic cascade:The above distribution function with Poisson distributions for each
sort of particle numbers is the input for UrQMD cascade.



The other stages: Hydro evolution, particlization, hadronic
cascade

" Hydro evolution: T < Teh T (x) = T ()P (1) + Tigq(2) (1 = P(7)) = Thgq(x)

= (€nyd(x) + phyd(x) + H)”hyd(x)uﬁyd(x)
— (Phya(x) + IDHg"" 4 7.

Solving of Israel-Stewart Relativistic Viscous Fluid Dynamics with I1 =0

at the isotherm hypersurface T=165 MeV

® Particlization: ‘ |
energy density e = 0.5 GeV/fm? for the Laine-Schroeder EoS

Switching hypersurface build with help of Cornelius routine.

For particle . » _—
distribution the Grad'’s d’AN; _ Aaup D2 fe (p*o T, /J?) 1+ (1F f,) PP,
14 momentum ansatz @P*d(cosd)do 272 (e +p)

IS used:

" Hadronic cascade:The above distribution function with Poisson distributions for each
sort of particle numbers is the input for UrQMD
Details are in: Naboka, Karpenko, Yu.S. arXiv: 1508.07204 (subm. to PRC).
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FIG. 2. Resulting pion spectra in the 0.1 < pr < 3 GeV/c region for centrality classes 0-5%,
5-10%, 10-20%, 20-30%, 30-40%, 40-50% and 50-60% obtained in the iHKM basic scenario (as in
Fig. 1). The results are compared with those in iHKM at the other parameter 79 = 0.5 fm/c
and with pure viscous hydro at the starting time 74, — 79 = 0.1 fm/c for centrality classes 0-5%,
10-20%, 30-40%. The experimental data are from [31]. The spectra for different centralities are

multiplied by the factor of 2 (2% = 64 for 0-5% centrality).
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FIG. 5. The detail picture of pion spectra in soft pr region for 0-5% centrality in the iHKM basic
scenario (as in Fig. 1) in comparison with the results obtained with (1) the other relaxation time
Trel = 0.75 fm /e instead of 0.25 fin/c, or with (2) isotropic parameter A = 1 instead of anisotropy
one A = 100, or with (3) the other initial time 70 = 0.5 fm/c instead of 0.1 fm/c. Also the results
for pure viscous hydro, starting at 7, — 79 = 0.1 fm/c are presented. The experimental data are

from [31].
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FIG. 3. The resulting kaon spectra under the same conditions as in Fig. 2.
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FIG. 4. The resulting antiproton spectra under the same conditions as in Fig. 2.



Predictions for particle spectra at LHC in non-central collisions
Centrality Dependence of 7, K, pin Pb—Pb at . /syy = 2.76 TeV

ALICE Collaboration %/%

arXiv:1303.0737v1 [hep-ex] ALICE
10° b = o ALICE.PbPb \Ifs_NIN:IQ.ITBITerI o
10 —&— STAR, Au-Auys,,, = 200 Gev

—=— PHEM, Au-Au \IIISNN =200 GeV

- 10| .
g & T+ (< 100) —
L ' N . .
. e o, o, K K610 ] Quotations:
" 102 | s TOng Tl prRED
— S Krakdw ° g a -
10—4 - H|-H{EF'OS 20-30% Central collisions ]

IN,, 1/(2rp_) d*Nf(dp_dy) (GeVic)?

a
n

|

o T

- - The difference between VISH2+1 and the data are possibly due to the
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comparison with HIKM [47, 50]. HKM is a model similar to VISH2+1, in which after the hy-

4 [T T L L LS IR |
10 B _‘i’_ ALICE, P 1{5_""_22'?8 e ] drodynamic phase particles are injected into a hadronic cascade model (UrQMD), which further
102 _;_ zﬁnzu ;u’ﬁh‘jz ;e;w | transports them until final decoupling. The hadronic phase builds up additional radial flow and
- s - affects particle ratios due to the hadronic interactions. As can be seen, this model yields a better
1 | S5 '+ (x 100) - description of the data. The protons at low pt, and hence their total number, are rather well
107 :: . “"”"'-# “K 10) :: rgprgduged, even if the s.lope i§ significantly sm?llle.:r than in the dat.a. Aqtibagon-bawon anni-
- . (e, e f%.: I hilation is an important ingredient for the description of particle yields in this model [47, 50].
107" | S HKm %'13. mi .
. = && Kralkdiw 70-80% Central collisions ? T 2= 1
10 B e e =

Phys. Rev. C 87, 024914 (2013
[47] Y. Karpenko, Y. Sinyukov, and K. Werner, (2012), arXiv:1204.5351 [nucl-th]

[50] Y. Karpenko and Y. Sinyukov, J.Phys.G G38, 124059 (2011),
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This interpretation is supported by the
comparison with HKM [39, 40], a similar model in which, after the hydrodynamic phase, particles are
injected into a hadronic cascade model (UrQMD [41, 42]), which further transports them until final de-
coupling. The hadronic phase builds additional radial flow, mostly due to elastic interactions, and affects
particle ratios due to inelastic interactions. HKM yields a better description of the data. At the LHC,
hadronic final state interactions, and in particular antibaryon-baryon annihilation, may therefore be an
important ingredient for the description of particle yields [43, 40], contradicting the scenario of negligible
abundance-changing processes in the hadronic phase. The third model shown in Fig. 1 (Krakdw [44, 45])
introduces non-equilibrium corrections due to viscosity at the transition from the hydrodynamic descrip-
tion to particles, which change the effective Ty, leading to a good agreement with the data. In the region
p1 < 3 GeV/e (Krakow) and pr < 1.5 GeV/c (HKM) the last two models reproduce the experimental
data within ~20%, supporting a hydrodynamic interpretation of the transverse momentum spectra at the
LHC. These models also describe correctly other features of the space-time evolution of the system, as
measured by ALICE with charged pion correlations [46)].

[39] Y. Karpenko and Y. Sinyukov, J.Phys. G38, 124059 (2011), nucl-th/1107.3745.
[40] Y. Karpenko, Y. Sinyukov, and K. Werner, (2012), nucl-th/1204.5351.
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FIG. 6. All charged particles’ vo coefficients centrality classes 0-5%, 5-10%, 10-20%, 20-30%, 30-
40%, 40-50% and 50-60% obtained in the iHKM basic scenario (as in Fig. 1). The results are
compared with those in iHKM at the other parameter dissipation condition, 1/s = 0.2 instead of

0.08 and with ideal hydro with the starting time 7, = 75 = 0.1 fm/c for centrality classes 5-10%,

10-20%, 20-30%. The experimental data are from [32].
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FIG. 7. All charged particles” vy coefficients centrality classes 0-5%. 5-10%. 10-20%. 20-30%, 30-
40%, 40-50% and 50-60% obtained in the iIHKM basic scenario (as in Fig. 1). The results are
compared with those in iHKM at the other initial time, 75 = 0.5 fm/c instead of 0.1 fm/c and
with viscous hydro at the starting time 7, = 79 = 0.1 fm/c for centrality classes 5-10%, 10-20%,

20-30%. The experimental data are from [32].
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FIG. 9. The R4, dependence on transverse momentum for different centralities in the iHKM

scenario under the same conditions as in Fig. 1. The experimental data are from [33].
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Important results

The 4fer (c) is OK at fixed relative contribution of binary collision o = 0.24.
1

but at different max initial energy densities

when other parameters change:
The two values of the shear viscosity

to entropy is used for comparison:

n/s = 0.08 = ﬁ and /s = 0.2

model| A | 7,0 |1/S| 70 |€0 [GeV /fm?]

hydro| - | - | 0 |0.1 1076.5
The basic res.ult (selected by red) is hydro| - _ lo.oglo1 238 8
compared with results at other
parameters, including viscous and ideal |[{HKMI!| 1 10.25/0.08(0.1 700 5
pure thermodynamic scenarios
(starting at 7y without pre-thermal stage |1HIKM|100/0.25/0.08)0.1 678.8

but with subsequent hadronic cascade). arMl100lo 7510 08101 616.5

1IHKM |100]0.25) 0.2 0.1 596.9

No dramatic worsening of the results
happens if simultaneously with changing of  |[1THIKM|100/0.25/0.08/0.5 126.7

parameters/scenarios renormalize maximal
initial energy density. The values 7. 7.0 corespond to fm/c.




Summary

" The integrated hydrokinetic model (iHKM) of A+A collisions is developed.

Quite satisfactory results at different centralities are reached for multiplicities of all
charged particles, pion, kaon and antiproton spectra, pion v_2- coefficients and
interferometry radii vs transverse momentum.

® The coherent description of these observables is achieved in IHKM with the small time
formation ( 79 = 0.1 fm/c) of the maximally anisotropic initial state, with small mean
relaxation time, T,..; = 0.25 fm/c, and the minimal ratio of shear viscosity over

entropy density n/s =1/4n.

® It is observed that the isotropic initial conditions, larger relaxation time, or treatment
of the pre-thermal stage just with viscous or ideal hydro-approach, leads not to
dramatically worse results, if normalization of maximal initial energy densities is
adjusted to reproduce multiplicity of all charged particles in each scenario.

® |t can explain a rather satisfactory data description in numerous variants of hybrid
models without pre-thermal stage when the initial energy densities are defined up to

a common factor.



and residual correlations at the LHC

iredictions for pA correlation function with purity corrected CF

RHIC V. M. Shapoval, B. Erazmus,R. — LHC V. M. Shapoval, Yu.S., V.
Lednicky, Yu.S. PRC 92, 034910 (2015) Naboka PRC 92, 044910 (2015)
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Thank you for your attention!
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