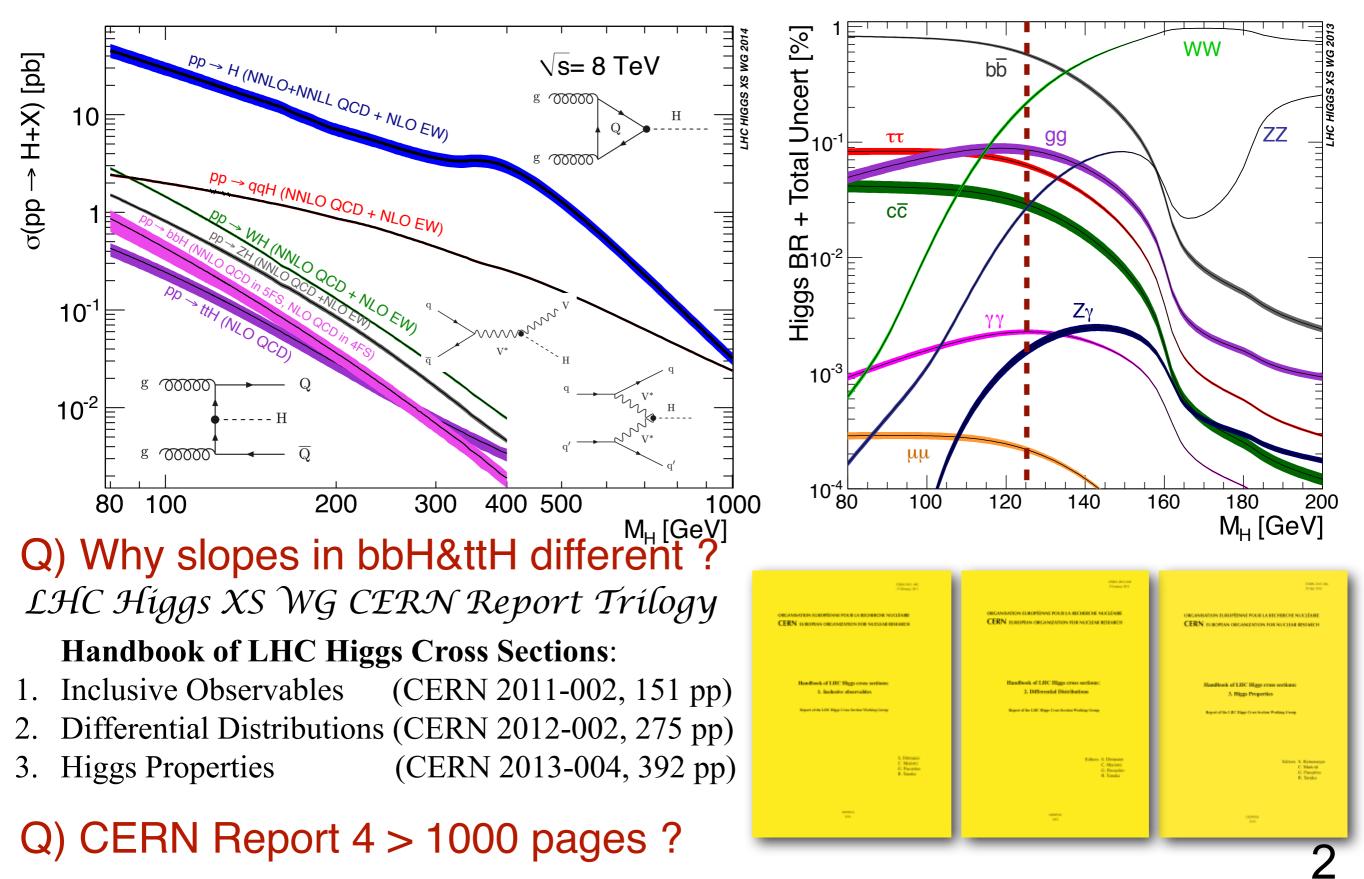
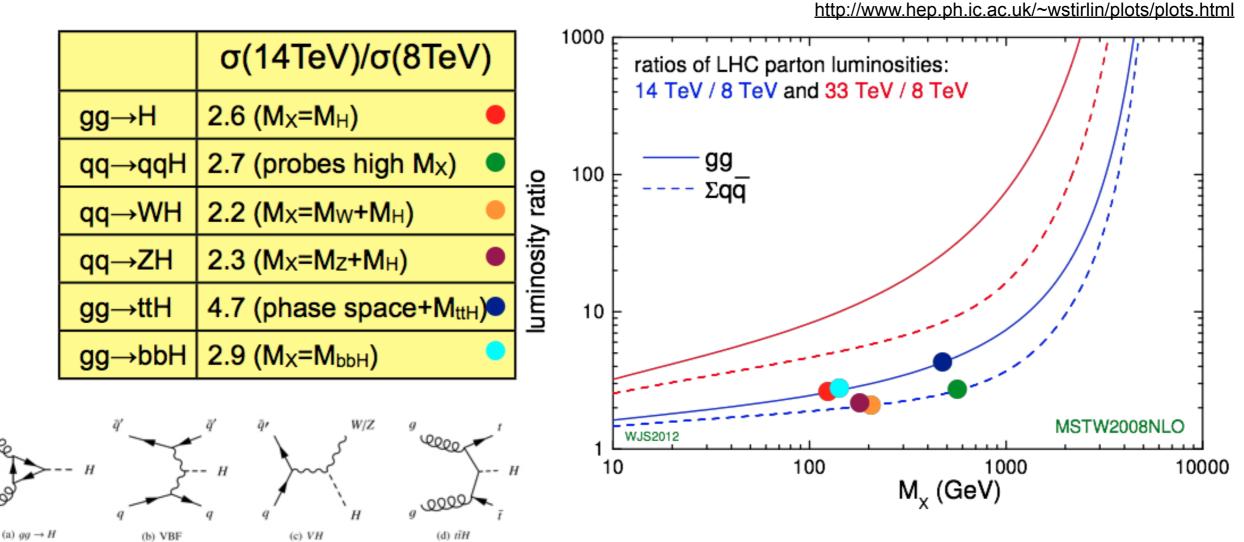
Leftovers from Run I and experimental challenges for Run II theoretical with experimentalist's biased view

Reisaburo TANAKA


(LAL-Orsay)

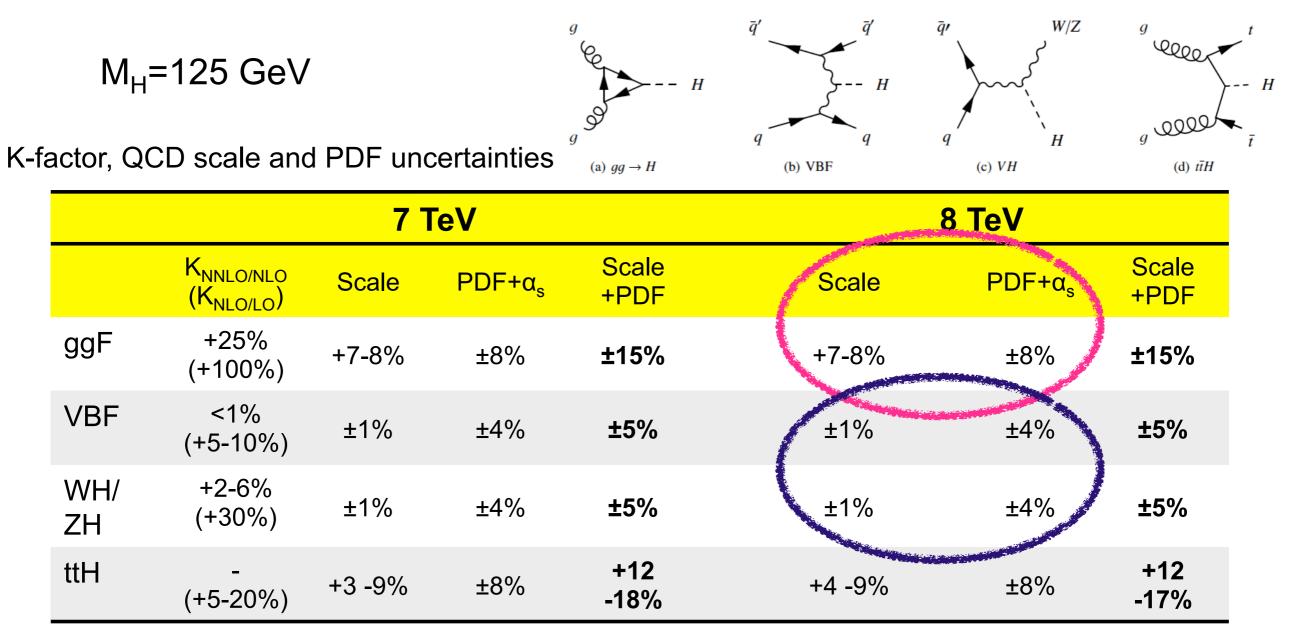
Higgs Days 2015, Santander September 14, 2015

Higgs Cross Section and Branching Ratio


Higgs XS&BR for RUN-2

RUN-2&3

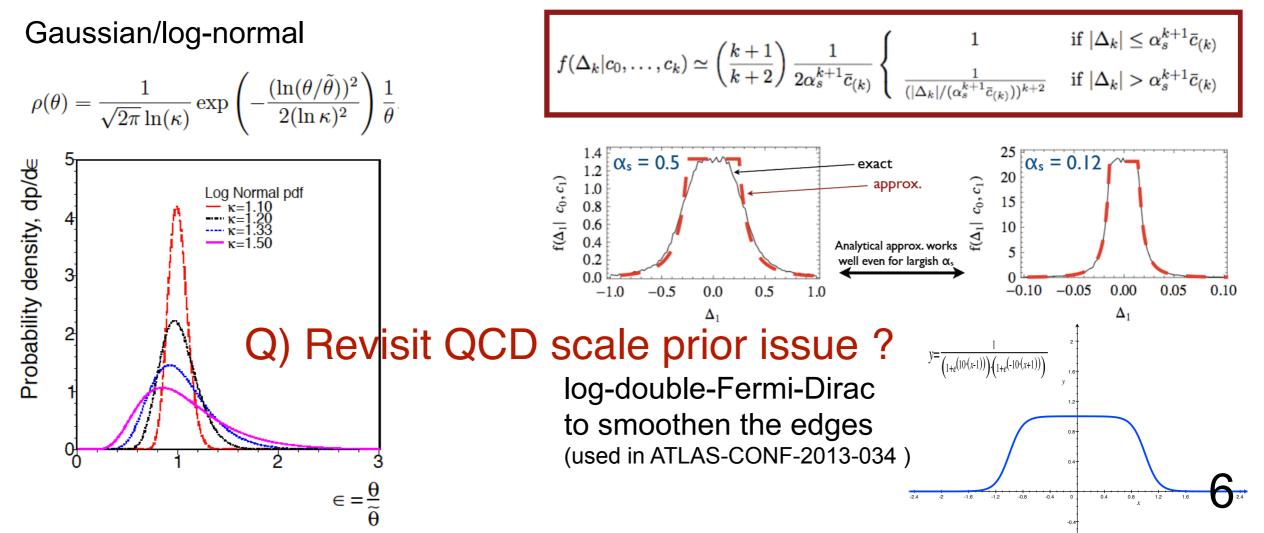
 \blacktriangleright L=100 fb⁻¹ by the end of RUN-2 in 2018, L=300 fb⁻¹ by the end of RUN-3

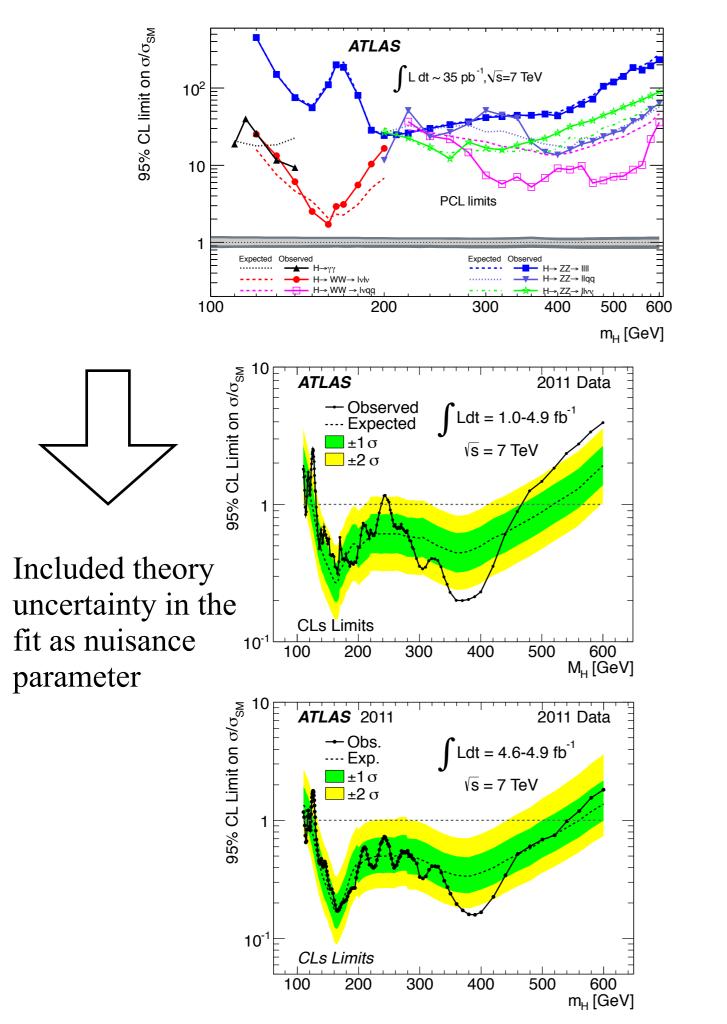

- I=3 ab⁻¹ at HL-LHC
- Cross section at 13/14TeV wrt 8TeV

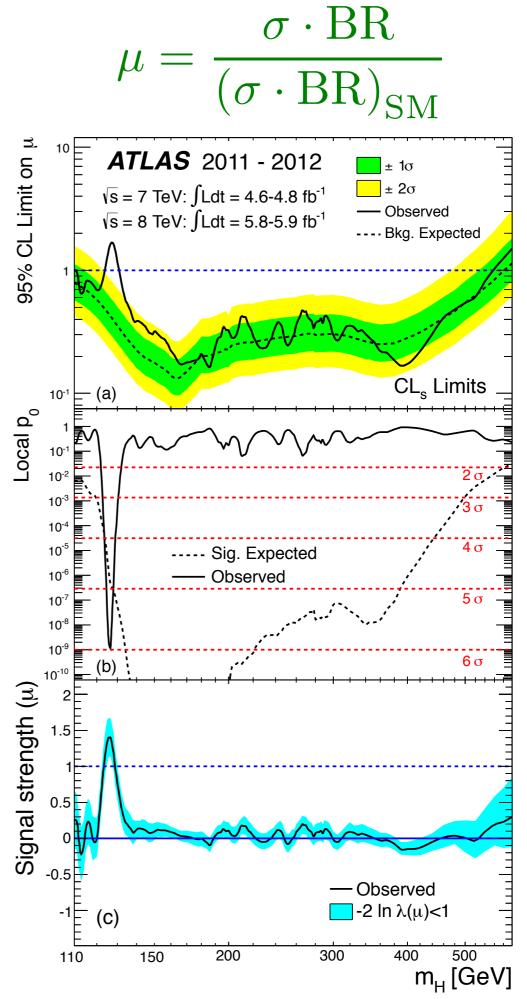
Solution $\mathbf{\Theta}$ the term of t

1. QCD Scale Uncertainty

Higgs XS theory uncertainties at 7/8 TeV




- Renormalization and factorization scale uncertainty study by M. Cacciari et al. work in progress.
- Higher-order calculations, ex. ggF QCD scale: $\pm 8\%$ @NNLO $\rightarrow \pm 5\%$ @NNNLO in few years ?
- PDF+ α_s (PDF4LHC prescription): ±8% \rightarrow <5% with improvements with LHC data ?
 - jets, top, prompt photons and Z p_T distributions contribute gluon PDF determination. (but paradoxically, ggF is the best measure to determine gg parton luminosity around M_H=125GeV!)**5**


QCD scale uncertainty

- LHC Higgs combination WG's prescription (ATL-PHYS-PUB-2011-011, CMS Note-2011/005)
 - Subdivide nuisance parameters until they become uncorrelated.
 - Take Gaissian/Log-normal for pdf. Practically Gaussian as $\kappa \simeq 1.0$ for scale.
- New method by M. Cacciari and N. Houdeau. JHEP 09 (2011) 039
 - Preserves both characteristics of log-normal (tail) and flat-top.
 - Treats renormalization scale only, factorization scale is work in progress.
 - Questions are flat-top width and tail length.

log-Cacciari-Houdeau

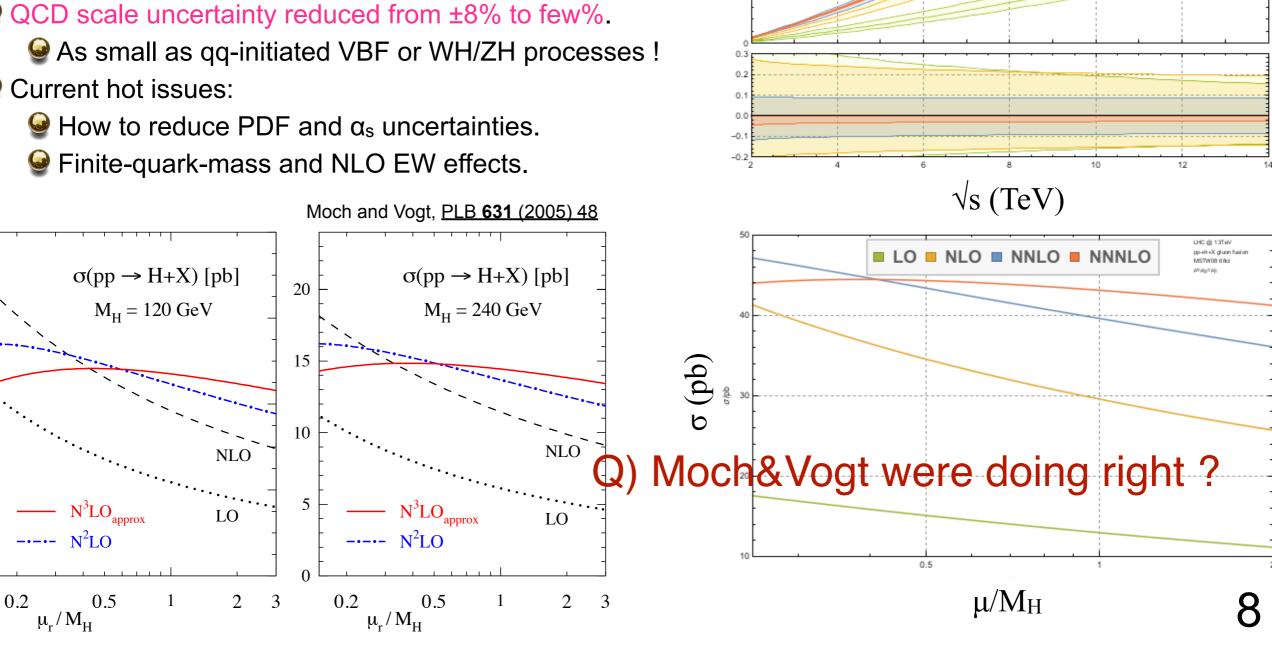
New phenomenal N³LO!

$\sigma/{ m pb}$	$2 { m TeV}$	$7 { m TeV}$	$8 { m TeV}$	$13 { m TeV}$	$14 { m TeV}$	
$\mu = \frac{m_H}{2}$	$0.99^{+0.43\%}_{-4.65\%}$	$15.31^{+0.31\%}_{-3.08\%}$	$19.47^{+0.32\%}_{-2.99\%}$	$44.31^{+0.31\%}_{-2.64\%}$	$49.87^{+0.32\%}_{-2.61\%}$	
$\mu = m_H$	$0.94^{+4.87\%}_{-7.35\%}$	$14.84^{+3.18\%}_{-5.27\%}$	$18.90^{+3.08\%}_{-5.02\%}$	$43.14^{+2.71\%}_{-4.45\%}$	$48.57^{+2.68\%}_{-4.24\%}$	dd) :

Z

 \bigcirc Large K-factor for gg \rightarrow H (+80-100%@NLO, +20%@NNLO) Sow complete perturbative calculation at NNNLO !

- \bigcirc QCD scale uncertainty reduced from ±8% to few%.
- Current hot issues:

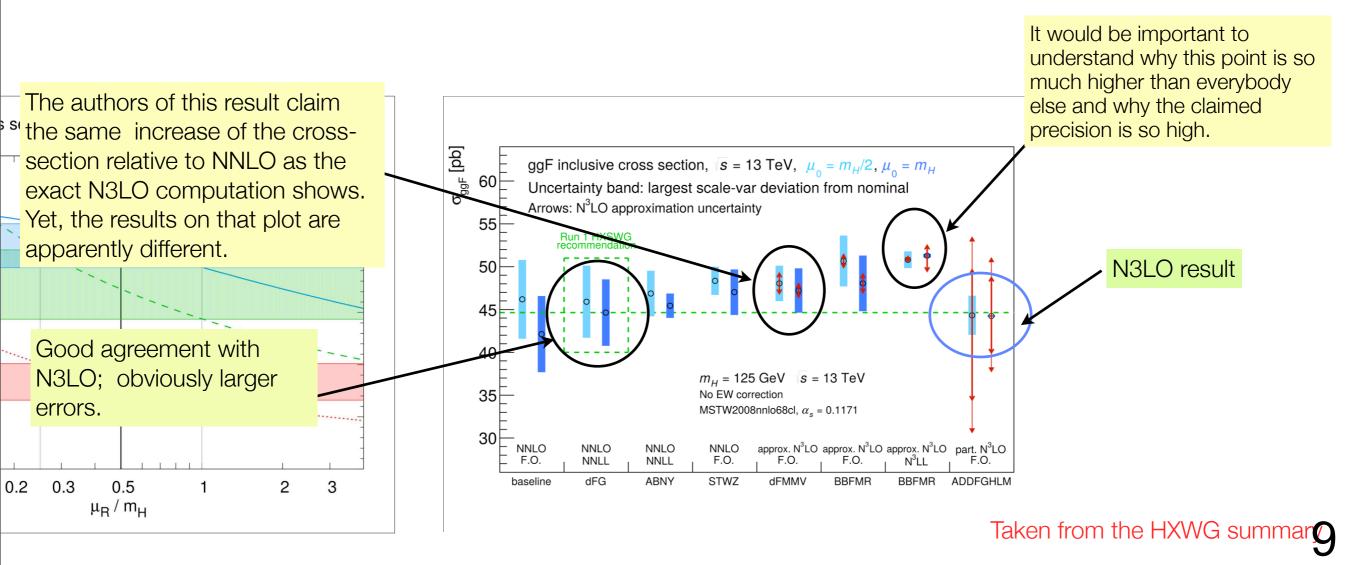

80

60

40

20

0



ap-+h+X gluan fusion

 $\mu = \mu_{R} = \mu_{R} = [m_{V}, \bar{m}_{V}]$ Central scale: y = m_o LO NLO NNLO NNLO

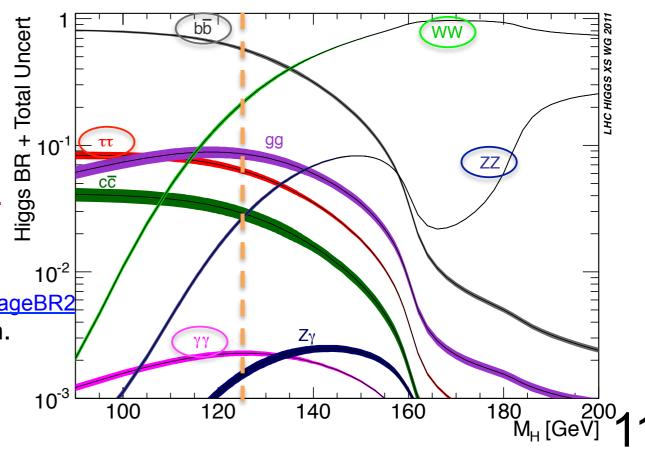
Higgs boson production in gluon fusion

Estimates of N³LO Higgs production cross sections were attempted before an exact calculation using various approximations (essentially, emission or soft gluons or powers of π are assumed to be the dominant source of QCD corrections). The HXWG has assembled various predictions for the Higgs cross section made before the N³LO result became available. The picture below should tell us about the success or failure of these predictions. But it does not...; it leaves more questions than answers. However, the correct answer is important since it will teach us if approximate predictions for Higgs production cross section are reliable and to what extent.

2. BR Uncertainty

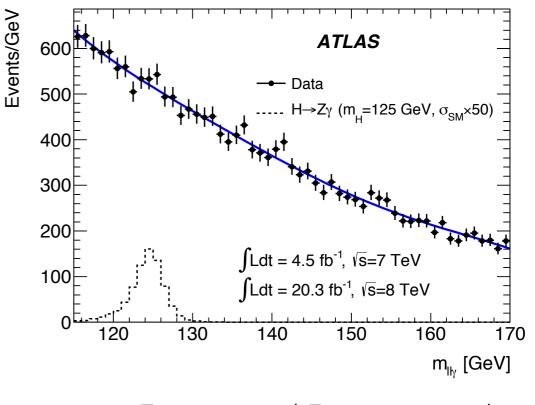
Higgs Decay Branching Ratios_{Q) THU prior ?}

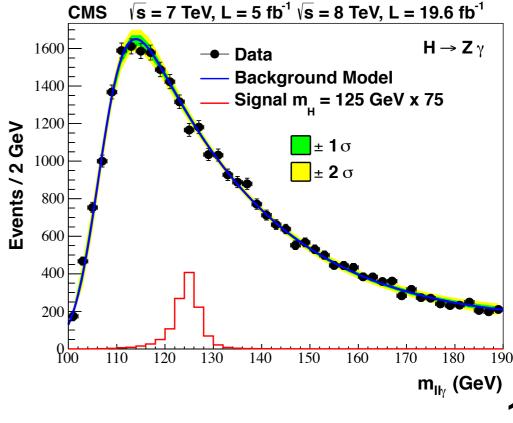
Use HDECAY and Prophecy4f for best estimate. A. Denner et al., Eur. Phys. J. C (2011) 71


- $\Gamma_{\rm H} = \Gamma^{\rm HDECAY} \Gamma^{\rm HDECAY}_{\rm WW} \Gamma^{\rm HDECAY}_{\rm ZZ} + \Gamma^{\rm Prophecy4f}_{\rm 4f}$
 - What are the theory (THU) + parametric (PU) uncertainties ?
 - Relatively large uncertainties for H→ττ, μμ, γγ, Zγ/WW/ZZ at low M_H.
 - Smaller uncertainties relative to scale and PDF+α_s uncertainties in Higgs production.

Separation of BR THU and PU are in progress. Stick to THU+PU **±5-10%** conservative uncertainty.

Updated numbers in CERN Report 2. 10^{-2} <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2</u> Major change was BR(H \rightarrow ss) due to quark mass definition.

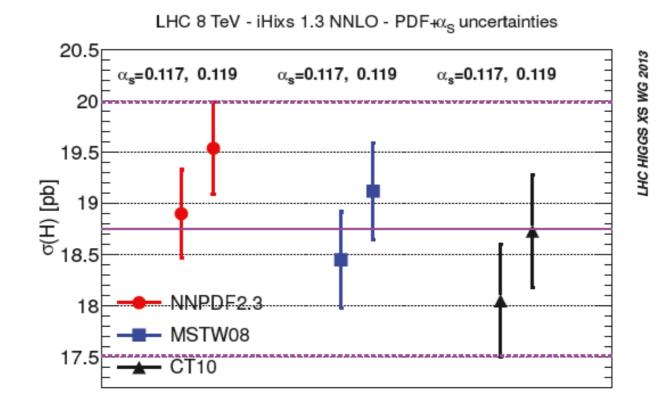

Revisit SM input parameters \Leftrightarrow (α_s , m_b , m_c , m_t) ... may affect BR (but not for XS)


M _H	Decay	THU	PU	Total
120GeV	H→bb	±1.3%	±1.5%	±2.8%
	Н→тт	±3.6%	±2.5%	±6.1%
	H→µµ	±3.9%	±2.5%	±6.4%
	Н→үү	±2.9%	±2.5%	±5.4%
	H→Zγ	±6.9%	±2.5%	±9.4%
	H→ZZ	±2.2%	±2.5%	±4.8%
	H→WW	±2.2%	±2.5%	±4.8%

$H \rightarrow Z\gamma$, Higgs Dalitz decay

- 1. Categorization should be like
 - 1. $H \rightarrow \gamma \gamma$
 - 2. H \rightarrow Z*/ γ *+ γ \rightarrow ffbar+ γ
 - 3. $H \rightarrow ffbar$
 - 4. H \rightarrow Z*+ γ * \rightarrow ffbar + f'f'bar
- 2. We should call process 2 as Higgs Dalitz decay.
- 3. We need to come to possible agreement with CMS on signal definition with (di-lepton) invariant mass cut to put in PDG.
- Q) A+C should come to common fiducial definition ?

3. PDF Uncertainty


PDF+ α_s Uncertainty

Q) α_s=0.118±0.015 for both NNLO and NLO?

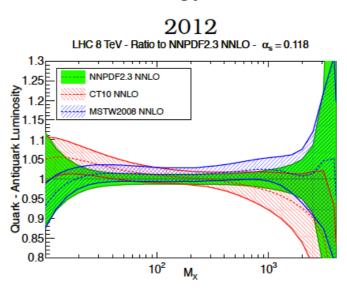
Q) How to improve a_s ?

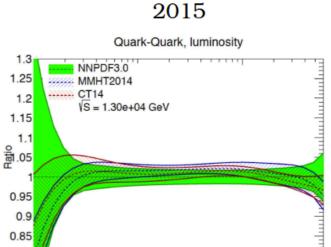
Update of PDF4LHC Prescription (2011) Q) N3LO PDF needed?
 "The PDF4LHC Working Group Interim Recommendations","

- "The PDF4LHC Working Group Interim Recommendations", arXiv:1101.0538 ... envelope of MSTW2008, CTEQ and NNPDF.
- Can we get the new PDF4LHC recommendation at NNLO?
- We should separate QCD α_s (d $\sigma/\sigma \approx 3d\alpha_s/\alpha_s$ though α_s^2 at LO)
 - $\pm 1\%$ uncertainty in α_s would corresponds to $\pm 3\%$ in XS which is comparable with scale uncertainty in N3LO ggF !
- Now many PDF sets are at NNLO (CT10, MSTW, NNPDF, ABM11, HEARPDF, ...) and LHC data start to play the role.

CERN Report 3, Fig. 59

Recent progress in PDF

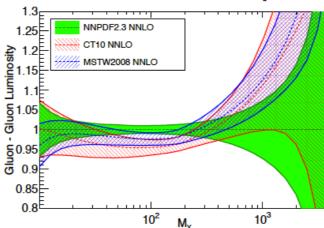

Q) PDF4LHC15 (LHAPDF6) for XS but also for MC?


- Now many NNLO PDF sets exist.
 - Major updates to CT14, MMHT2014, NNPDF3.0
 - CT10, MSTW2008 and NNPDF2.3 in RUN-1
- Almost perfect agreement between global PDF fits now !
 - All sets have changed a lot. Now all include lots of LHC RUN-I data. MMHT and CT have enlarged their parametrization and use orthogonal polynomials. NNPDF uses a closure test to tune the methodology. So there is no single simple

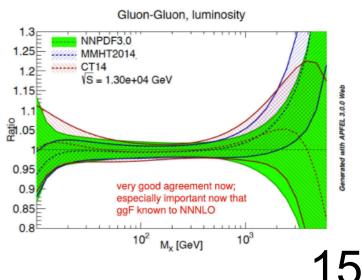
explanation. (S. Forte)

	CT14	MMHT2014	NNPDF3.0
8 TeV	18.66 pb	18.65 pb	18.77 pb
	-2.2%	-1.9%	-1.8%
	+2.0%	+1.4%	+1.8%
13 <u>TeV</u>	42.68 pb	42.70 pb	42.97 pb
	-2.4%	-1.8%	-1.9%
	+2.0%	+1.3%	+1.9%

J. Huston, PDF4LHC meeting, Apr. 13, 2015



M_x [GeV]


10³

0.8

10²

ggF cross section at NNLO

$PDF+\alpha_s$ uncertainty correlations between Higgs signal and SM backgrounds

 Previous prescription based upon <u>LHC Higgs Combination prescription</u> in 2011. 100% correlated PDF+ α_s uncertainties for gg-initiated (ggF, ttH, gg->VV) and qq-initiated (VBF, VH, VV) processes.

H_	120																		
	ggH	VBF	WH	ZH	ttH	z	W+/W -	22	ww	wz	Wγ	WQQ	ZQQ	ggWW	ggZZ	ttbar	tW	tb	tbq
ggH	1	-0.57	-0.23	-0.14	-0.6	0.01	0.03	0.02	-0.20	0.04	0.23	-0.14	0.95	0.47	0.28	-0.35	-0.12	-0.24	0.52
VBF	-0.57	1	0.63/0.73	0.76	0.09	0.43	0.26/0.41	0.79	0.72	0.28/0.43	0.28/0.37	0.52/0.71	-0.41	-0.47	-0.4	-0.10	-0.28	0.65	-0.25
wн	-0.23	0.63/0.73	1	0.93	0	0.62	0.52/0.64	0.92	0.93	0.65/058	0.65/0.56	0.79/0.95	-0.02	-0.29	-0.28	-0.15	-0.28	0.99/0.77	0.05/-0.30
ZH	-0.14	0.76	0.93	1	0.03	0.64	0.53/0.66	0.99	0.99	0.55/0.71	0.63	0.83	-0.07	-0.31	-0.3	-0.14	-0.28	0.93	-0.14
ttH	-0.6	0.09	0	0.03	1	-0.61	-0.6	0	-0.05	-0.58	-0.64	0.04	-0.5	0.03	0.56	0.94	0.84	0.02	-0.07

m..=120

• The correlation between ggF and ttH was negative ρ =-0.6 (with CTEQ?).

PDF+ α_s uncertainty

- Currently assume separate gg-initiated $\pm 8\%$ and qq-initiated $\pm 4\%$.
 - Assumes NO PDF+ α_s correlation between (ggF, ttH, tt, ...) and (VBF, VH, VV, ...).
- Full correlation study in CERN Report 2 (<u>https://cds.cern.ch/record/1416519</u>)
 - $ggF VBF \rho = -0.6$... due to sum rule of $\Sigma(gg+qq+qqbar)=1$.
 - $ggF WH \rho = -0.2$... due to small correlation between gg vs qqbar.
 - $ggF ttH \rho = -0.2$... it's the different Bijorken-x.

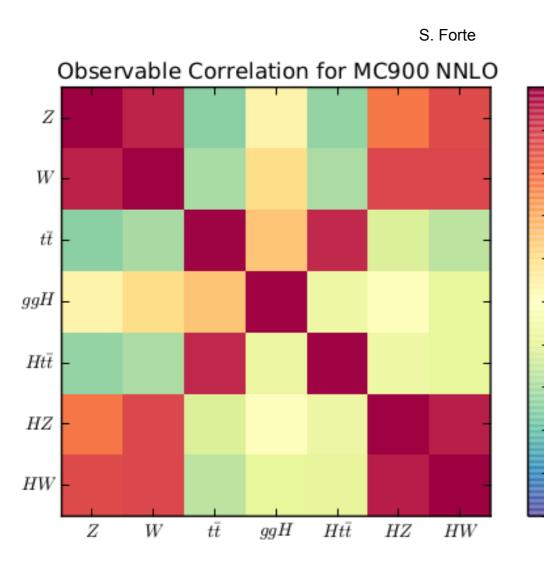
CERN Report 2

-	$M_{\rm H} = 120 {\rm GeV}$	ggH	VBF	WH	$t\overline{t}H$	Table 10
_	$_{ m ggH}$	1	-0.6	-0.2	(-0.2)	
	VBF	-0.6	1	(0.6)	-0.4	
	WH	-0.2	0.6	1	-0.2	
Q) Which PDF correl	ation $t\overline{t}H$	-0.2	-0.4	-0.2	1	
should we take int	O W	-0.2	0.6	0.8	-0.6	
account ?	WW	-0.4	0.8	1	-0.2	
account .	WZ	-0.2	0.4	0.8	-0.4	
	Wγ	0	0.6	0.8	-0.6	
	Wbb	-0.2	0.6	1	-0.2	
	t t	0.2	-0.4	-0.4	1	
	$t\overline{b}$	-0.4	0.6	1	-0.2	
_	$t(\rightarrow \overline{b})q$	0.4	0	0	0	

All these issues should be discussed in LHC Higgs Combination WG.1 /

$PDF+\alpha_s$ uncertainty correlations between Higgs signal and SM backgrounds

- PDF4LHC average for the PDF correlations (CERN Report 2, PDF section, Table 10 and 11)
- The correlation between ggF and VBF is ρ =-0.6 due to sum rule of parton luminosity Σ (gg+qq+qqbar)=1.
- The correlation between ggF and WH is ρ =-0.2 due to small correlation in parton luminosity between gg vs qqbar.
- The correlation between ggF and ttH is negative ρ=-0.2 contrary to naive intuition. It is due to the fact that these processes are hitting different Bjorken-x regime (ttH system requires much heavier final state than ggF), hence anti-correlated in gg-parton luminosity. For heavier Higgs, the correlation becomes positive (ex. ρ=+0.8 for M_H=800GeV) as shown in Table 10 in CERN Report 2.


$M_{\rm H}=120~{\rm GeV}$	ggH	VBF	WH	$t\overline{t}H$		W	WW	WZ	Wγ	Wbb	$t\overline{t}$	$t\overline{b}$	$t(\rightarrow \overline{b})q$
ggH	1	-0.6	-0.2	-0.2	W	1	0.8	0.8	1	0.6	-0.6	0.6	-0.2
VBF	-0.6	1	0.6	-0.4	WW	0.8	1	0.8	0.8	0.8	-0.4	0.8	0
WH	-0.2	0.6	1	-0.2	WZ	0.8	0.8	1	0.8	0.8	-0.4	0.8	0
${ m t}{ar { m t}}H$	-0.2	-0.4	-0.2	1	Wγ	1	0.8	0.8	1	0.6	-0.6	0.8	0
\mathbf{W}	-0.2	0.6	0.8	-0.6	Wbb	0.6	0.8	0.8	0.6	1	-0.2	0.6	0
$\mathbf{W}\mathbf{W}$	-0.4	0.8	1	-0.2	$t\overline{t}$	-0.6	-0.4	-0.4	-0.6	-0.2	1	-0.4	0.2
WZ	-0.2	0.4	0.8	-0.4	$t\overline{b}$	0.6	0.8	0.8	0.8	0.6	-0.4	1	0.2
Wγ	0	0.6	0.8	-0.6	$t(\rightarrow \overline{b})q$	-0.2	0	0	0	0	0.2	0.2	1
$Wb\overline{b}$	-0.2	0.6	1	-0.2	v(· · ·)q	0.2	0	0	0	0	0.2	0.2	
$t\overline{t}$	0.2	-0.4	-0.4	1									
$t\overline{b}$	-0.4	0.6	1	-0.2									
$t(\rightarrow \overline{b})q$	0.4	0	0	0									

C) Asking PDF4LHC WG for full correlation table for Higgs and SM bkg.

Recent updates (S. Forte)

 $\sqrt{s} = 13 \text{TeV}, \alpha_s = 0.118$ (do not expect large change for 7&8TeV)

Second Combination PDF4LHC set, obtained by combining 300 replicas each for CT14, MMHT, NNPDF3.0.

.0.	Z	+1	+0.89	-0.49	+0.08	-0.46	+0.56	+0.74
		-				0.10	0.00	0.7.1
1.0	W	+0.89	+1	-0.40	+0.20	-0.40	+0.76	+0.77
0.8 0.6	tt	-0.49	-0.40	+1	+0.30	+0.87	-0.23	-0.34
0.4 0.2	ggH	+0.08	+0.20	+0.30	+1	-0.13	-0.01	-0.17
0.0 -0.2	ttH	-0.46	-0.40	+0.87	-0.13	+1	-0.13	-0.17
-0.4 -0.6	WH	+0.56	+0.76	-0.23	-0.01	-0.13	+1	+0.90
-0.8 -1.0	ZH	+0.74	+0.77	-0.34	-0.17	-0.17	+0.90	+1
		Z	W	tt	ggH	ttH	WH	ZH

19

4. ggF and Jet-bin Uncertainty

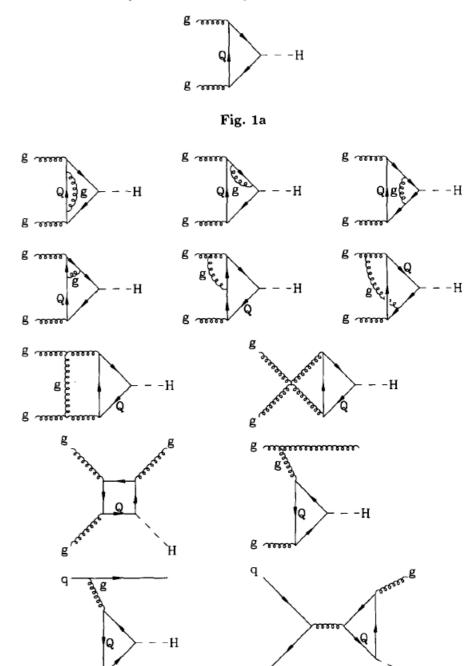
NLO MC for H+2-jets

- we still observe discrepancies among different generators.
- use Sherpa H+2-jet@NLO to evaluate the CJV uncertainty if we use the JVE method?

Uncertainties in jet-bin

- need to continue discussions with S&T, JVE-resummed, improved S&T and other SCET approaches.
- study jet-bin fractions/jet-veto efficiencies and pT^H. Compare them with different NLO ME+PS MCs.

NNLO exclusive cross sections


 need to follow up the recent progresses in H+0/1/2-jet(s) NNLO exclusive cross sections [Glover et al.], [Melnikov, et al.].

 \bigcirc Integration of Prophecy4f H→4f decay into (N)NLO MC (general issue).

Summed Frying to coordinate discussions on i) NLO ME+PS MCs, ii) H+0/1/2-jet exclusive/ inclusive calculations, iii) Jet-bin via S&T, JVE-resummed, iv) Higgs p_T, etc.

(N)NLO QCD + NLO EW MC

- NNLO QCD + NLO EW MC does not exist yet !
 Mew developments in NNLO QCD MC in W/Z/H for 2→1 (colorless) process at LHC.
- NLO ME+PS Monte Carlo
 - Normalize with NNLO QCD + NLO EW inclusive cross section.
 - In NLO EW effect O(5-10%) correction via Higgs p_T reweighing (poor-man's solution).
 - Attention to non-accounted diagrams in NLO ! gq/qq negligible (< few %) in NNLO inclusive, but gq is 30% in H+1-jet exclusive !
 - Many matching schemes: POWHEG MiNLO, Fx-Fx aMC@NLO, SHERPA MEPS@NLO, PYTHIA9/UNLOPS, HW++/Matchbox.

M. Spira et al. / Nuclear Physics B 453 (1995) 17-82

Fig. 1b

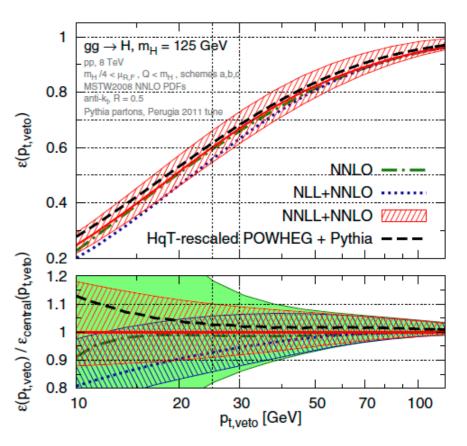
g mm

Fig. 1. Generic diagrams of the gluon fusion mechanism $gg \rightarrow H$ for the production of Higgs bosons: lowest order amplitude (a), and QCD radiative corrections (b).

22

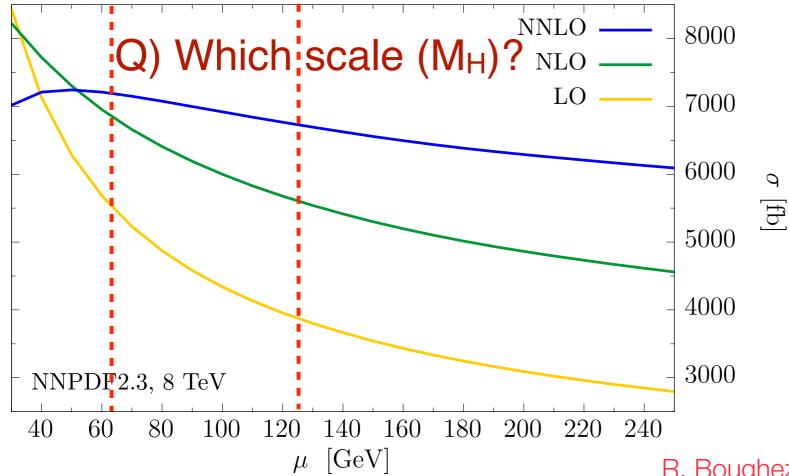
Η

Jet-bin Uncertainty in ggF


- 1) Stewart&Tackmann prescription ... fixed order calculation. (PRD 85 (2012) 034011)
- 2) Jet Veto Efficiency (JVE-resummed) by Banfi, Salam, et al.
 - improvements in 0- and 1-jet bin uncertainty. (PRL109 (2012) 202001)
- 3) Updated S&T with 0,1-jet rsummation by Tackmann, Petriello et al. (PRD 89 (2014) 074044)
- 4) Other groups with SCET(soft-collinear effective theory) (Neubert et al.)

 \bigcirc JVE-resummed method will affect Δµ and Δσ substantially in exclusive analysis (ex. H→WW) !

- Higgs p_T (p_{Tt}) and jet-bin should be strongly correlated. ∴ Higgs p_T is generated by gluon, while Y by PDF.
- Jets in PS MC needs special attention.
- Recent preprint by Boughezal et al. (PRL 115 (2015) 082003) on exclusive H+1-jet NNLO QCD calculation.
- Still a lot of discussions on H+0/1-jet NNLO+NNLL exclusive cross sections on scale choice etc.
- Improvements expected in jet-bin uncertainty due to N3LO, etc.


NNLO+NNLL for 0-jet bin uncertainty is

±15%→±9% ! (code <u>JetVHeto</u>)

H+jet @ NNLO

The NNLO QCD corrections to H+jet production at the LHC were computed recently. They increase the H+jet production cross section by O(20%) and significantly reduce the scale dependence uncertainty. This is similar to corrections to the inclusive Higgs production cross section although corrections to H+j are slightly smaller.

$$\sigma_{\rm LO} = 3.9^{+1.7}_{-1.1} \text{ pb}$$

 $\sigma_{\rm NLO} = 5.6^{+1.3}_{-1.1} \text{ pb}$
 $\sigma_{\rm NNLO} = 6.7^{+0.5}_{-0.6} \text{ pb}$

The cross sections for the anti-k_t algorithm with the jet transverse momentum cut of 30 GeV at the 8 TeV LHC.

R. Boughezal, F. Caola, K.M., F. Petriello, M. Schulze

Combine with N3LO+NNLL for exclusive jet bins !

Using these results and the N³LO computation of the Higgs total cross section, one can find the fraction of Higgs boson events without detectable jet radiation.

LHC13 efficiencies: 0- and 1-jet bin

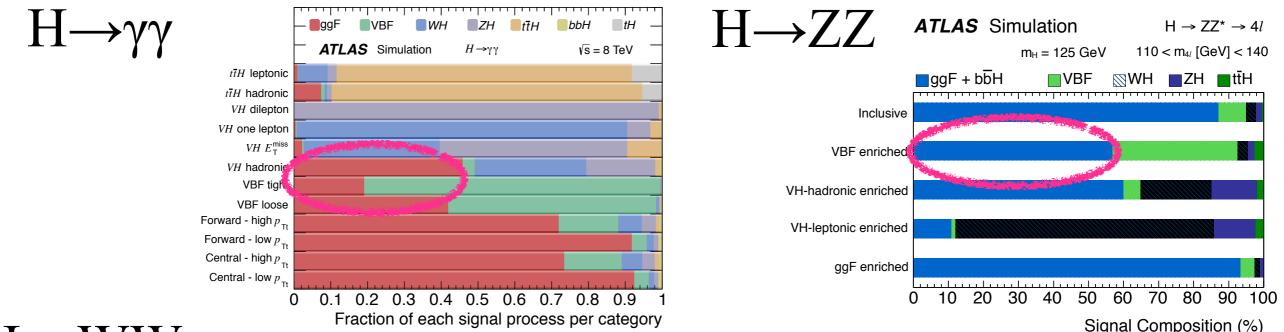
[Many thanks to P. F. Monni and F. Dulat]

F. Caola, LHCHXSWG WG1 meeting, May 2015

0-jet bin

ord	$\sigma_{0-\text{jet}}^{\text{f.o.}}$ (JVE)	$\sigma_{0-\text{jet}}^{\text{f.o.+NNLL}}$ (JVE)	$\sigma_{0-\text{jet}}^{\text{f.o.+NNLL}}$ (scales)
NNLO	$26.2^{+4.0}_{-4.0} \text{ pb}$	$25.8^{+3.8}_{-3.8}$	$25.8^{+1.6}_{-1.6}$
N ³ LO	$27.2^{+2.7}_{-2.7}$ pb	$27.2^{+1.4}_{-1.4}$	$27.2^{+0.9}_{-0.9}$

≥1-jet bin


ord	$\sigma_{\geq 1-\text{jet}}^{\text{f.o.}}$ (scales)	$\sigma_{\geq 1-\text{jet}}^{\text{f.o.}}$ (JVE)	$\sigma_{\geq 1-\text{jet}}^{\text{f.o.+NNLL}} (\text{JVE})$
NLO	$14.7^{+2.8}_{-2.8} \text{ pb}$	$14.7^{+3.4}_{-3.4}$	$15.1^{+2.7}_{-2.7}$
NNLO	$17.5^{+1.3}_{-1.3}$ pb	$17.5^{+2.6}_{-2.6}$	$17.5^{+1.1}_{-1.1}$

- Logs completely under control (logR: see [Dasgupta, Dreyer, Salam, Soyez (2015)])
- No breakdown of f.o. perturbation theory for $p_T \sim 30$ GeV
- Reliable error estimate from lower orders
- Logs help in reducing uncertainties
- Significant decrease of pert. uncertainty

Q) What EXPs should do for H+1/2-jet bin in RUN-2 (H+0-jet in NNLO)?

ggF contamination in VBF category

Needs significant improvements in reduction of ggF contamination and reduction of theory uncertainty with Gosam HJJJ etc.

ignal	Composition	(%)
-------	-------------	-----

$\Delta \epsilon_0 = \pm 11^\circ$	0		Observ	ved $\mu = 1.09$	Observe	ed $\mu_{\rm ggF} = 1.02$	Observe	ed $\mu_{\rm VBF} = 1.27$
JVE method $\Delta \epsilon_0 = \pm 11^{\circ}$ $\Delta \epsilon_1 = \pm 15^{\circ}$	O Source	Er: +	ror _	Plot of error (scaled by 100)	Error + –	Plot of error (scaled by 100)	Error + –	Plot of error (scaled by 100)
	Data statistics	0.16	0.15		0.19 0.19		0.44 0.40	
$ \begin{array}{c} $	Signal regions	0.12	0.12		0.14 0.14		$0.38 \ 0.35$	
$5 \text{ ATLAS} \qquad \qquad$	Profiled control regions	0.10	0.10		$0.12 \ 0.12$		$0.21 \ 0.18$	
$[v] s = 7 \text{ TeV}, [L dt = 4.7 \text{ fb}^{-1}]$ $[v] tt = \text{Single top}$	Profiled signal regions	-	-	-	0.03 0.03	+	0.09 0.08	+
4000 H→WW ^(') →lvlv U H [125 GeV] x 10	MC statistics	0.04	0.04	+	0.06 0.06	+	0.05 0.05	+
	Theoretical systematics	0.15	0.12		0.19 0.16		0.22 0.15	
3000	Signal $H \to WW^* \mathcal{B}$	0.05	0.04	+	$0.05 \ 0.03$	+	0.07 0.04	+
	Signal ggF cross section	0.09	0.07		0.13 0.09		$0.03 \ 0.03$	+
2000	Signal ggF acceptance	0.05	0.04	+	$0.06 \ 0.05$	+	0.07 0.07	+
	Signal VBF cross section	0.01	0.01	+		-	$0.07 \ 0.04$	+
1000	Signal VBF acceptance	0.02	0.01	+		-	$0.15 \ 0.08$	+
	Background WW	0.06	0.06	+	0.08 0.08		0.07 0.07	+
	Background top quark	0.03	0.03	+	0.04 0.04	+	0.06 0.06	+
0 2 4 6 8 10	Background misid. factor	0.05	0.05	+	0.06 0.06	+	$0.02 \ 0.02$	+
N _{iets}	Others	0.02	0.02	+	$0.02 \ 0.02$	+	0.03 0.03	+

H→WW

5. Higgs pt

Higgs p_T in ggF

Higgs p_T uncertainty in ggF, Higgs p_T uncertainty assignment (d σ /dp_T)

- MC reweighting study with HRes(v2) in NNLL+NNLO.
 - Decided to survive with reweighting for legacy paper.

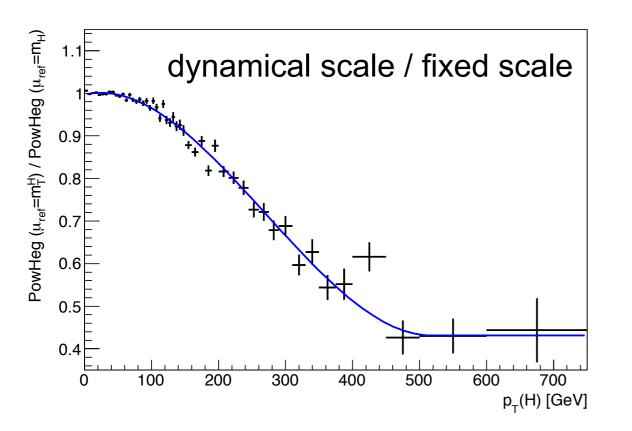
Q) How to avoid MC reweighing for Higgs pT and NLO EW?

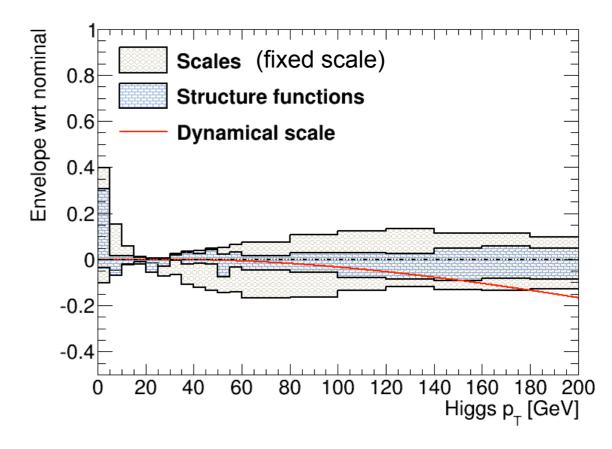
- Still to check dynamical scale, which is relevant in boosted regime (p_T>M_H).
- To do hfact tune in POWHEG.

Q) Higgs p_T in BSM?

- Some interest for BSM Higgs p_T and physics in via dσ/dp_T.
 - MSSM/2HDM Higgs p_T in POWHEG by A. Vicini et al.
 - bottom quark softens the p_T spectrum compared to top (<u>MSSM</u> already exists).

 \rightarrow POWHEG should be useful for CP-mixing study in J^P=0[±].


Bagnaschi, ATLAS (N)NLO MC & Tools WS, Dec. 17, 2014


Dynamical scale

- Solution Dynamical scale is relevant in boosted regime (typically $p_T > 100 \text{GeV}$ or M_H).
 - ex. gg \rightarrow H with $\mu = \sqrt{p_T^2 + M_H^2}$ instead of fixed $\mu = M_H$.
 - Reduces cross section but also changes the shape! Same issue for SM bkg.!
 - Dynamical scale recently implemented in HRes2.1.
 - Dynamical scale effect for VH is <u>relatively small (5%)</u> due to the fact that Higgs is recoiling against V not against jets. How about VBF, SM VV?

Recommends to use dynamical scale for Higgs signal and bkg. when relevant.

Q) Suggests dynamical scale of boosted and other analysis?

6. Higgs Interferometry

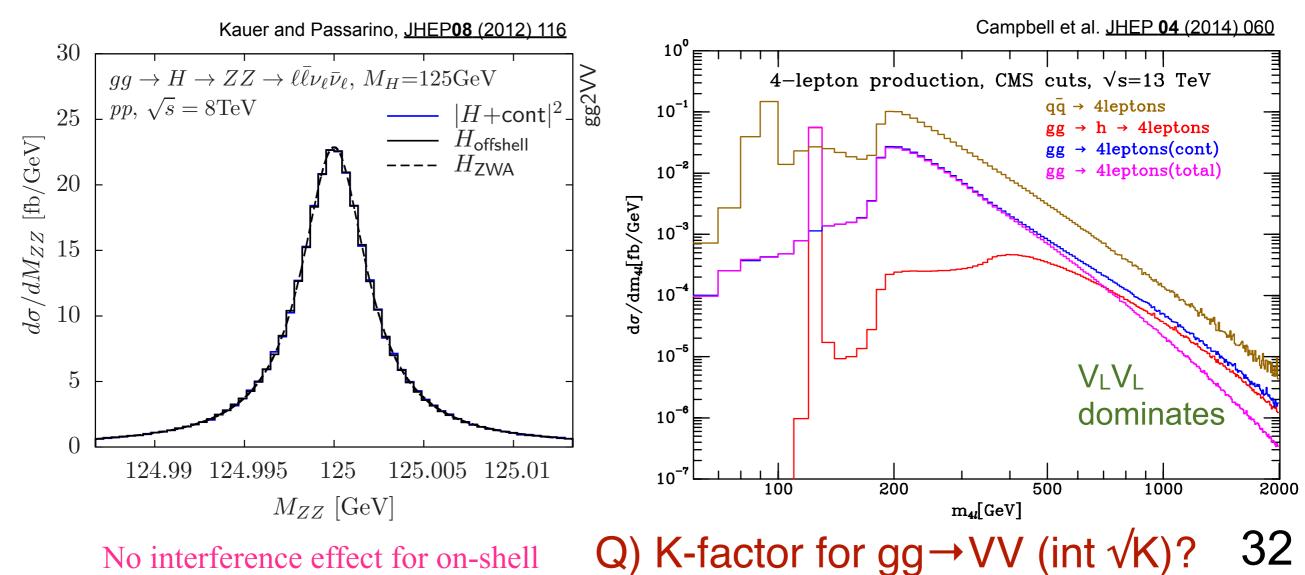
Higgs Interferometry

- Interference exists when
 (i) identical initial and final state
 (ii) at the same order in perturbative theory, α_{EW}^m×α_{QCD}ⁿ (not always true?)
- 1. Interference with continuum background in $gg \rightarrow \gamma\gamma$ and VV, VBF
- 2. Loops in Higgs boson production and decay, $gg \rightarrow H \rightarrow \gamma\gamma, Z\gamma$ (via t,b,W), $gg \rightarrow ZH$ (via t,Z), tH (via t,W)
- 3. Identical particles in the decay, $H\rightarrow WW/ZZ\rightarrow 4f$ for M_H=120GeV,
 - +11% in H \rightarrow ZZ* \rightarrow eeee,µµµµ
 - -5.4% in H \rightarrow WW*/ZZ* \rightarrow evev, $\mu\nu\mu\nu$

CERN Report 2

Higgs Interferometry in H→4 leptons

 $\sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-shell} \sim \frac{g_{\rm Hgg}^2 g_{\rm HZZ}^2}{(2M_Z)^2}$


 $\sigma^{\rm on-shell}_{\rm gg \rightarrow H \rightarrow ZZ}$

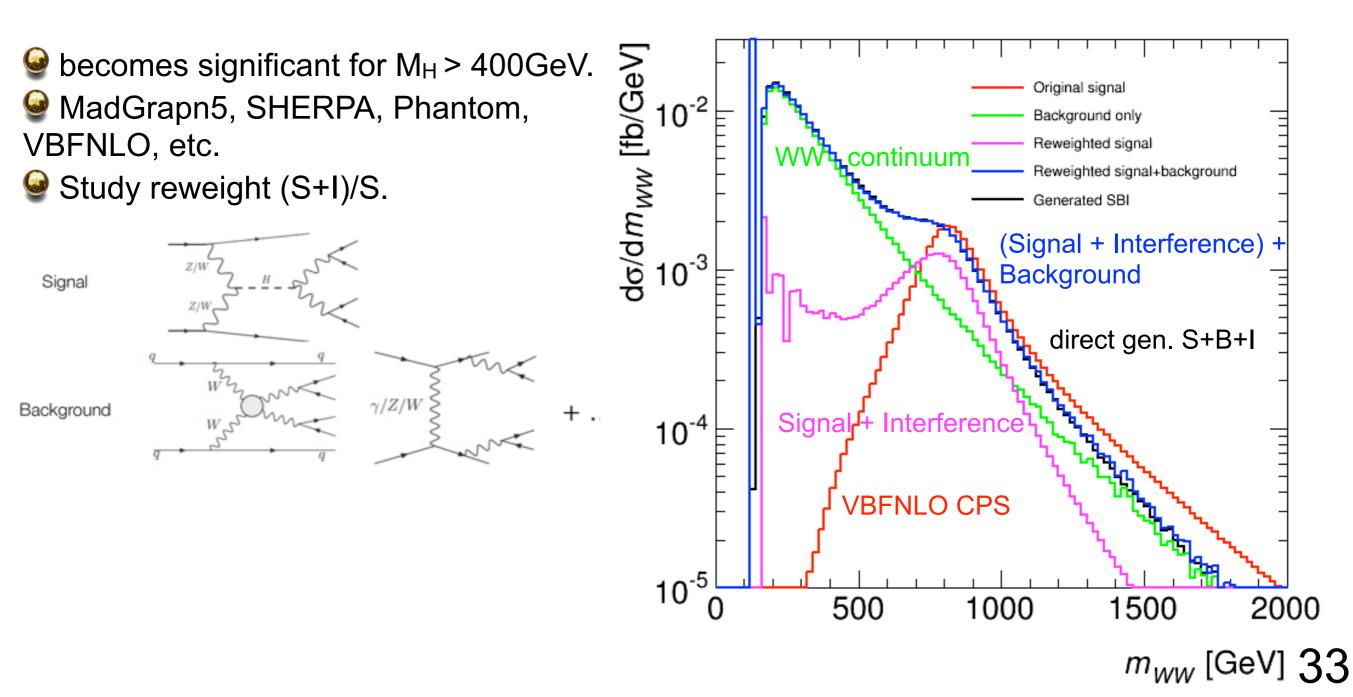
q

 $g^2_{
m Hgg}g^2_{
m HZZ}$

 $m_{
m H}\Gamma_{
m H}$

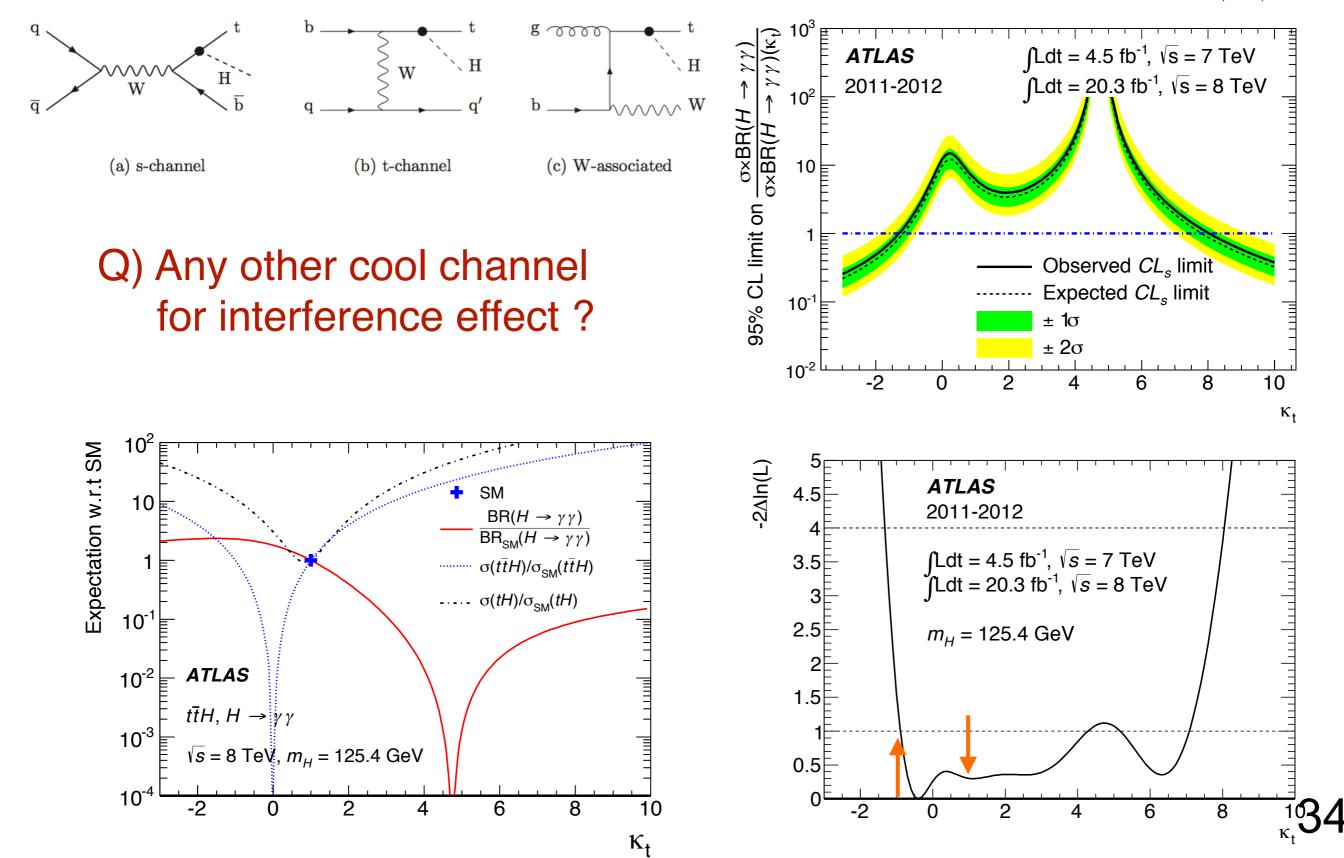
- Kauer-Passarino-Caola-Melnikov Effect
 - Off-shell signal cross section is independent of $\Gamma_{\rm H}$!
 - On-shell signal cross section is proportional to $1/\Gamma_{\rm H}$
 - Take the ratio in σ !
 - More pronounced at 13/14TeV as gg parton-luminosity increases.

g ood


g ee

Η

VBF Interference meeting in LHCHXSWG, Dec. 19, 2013 Heavy Higgs width and interference discussion in LHCHXSWG, May 4, 2015


Higgs Interference in VBF

Interference in VBF $H \rightarrow WW/ZZ$

Resolving the degeneracy in κ_F with interference in tH

ATLAS PLB 740 (2015) 222

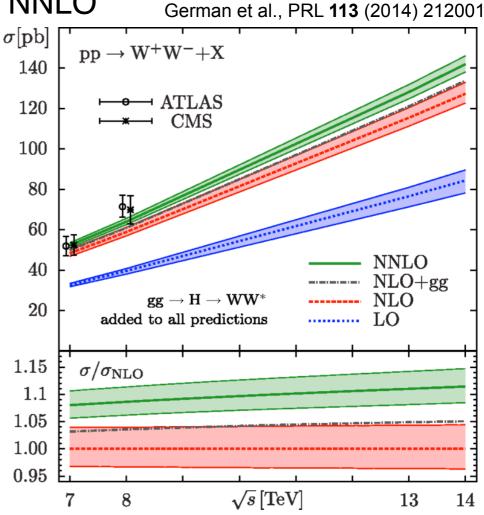
7. NNLO Differential VV

Q) NNLO QCD + NLO EW pp→VV MC? NLO QCD MC for gg→VV? pp→WW/WZ/ZZ/W γ /Z γ @NNLO

- Solutionary NNLO QCD pp \rightarrow WW/WZ/ZZ/W γ /Z γ calculations by M. Grazzini et al.
 - Solution Onshell gauge-boson (except WZ). Offshell case completed recently (Z*Z* ready in <u>arXiv:1507.06257</u>).
 - \bigcirc NNLO correction at 9-12% for pp→WW (gg→WW contributes 35% at NNLO).
 - **We** survived with K(m₄₁) for RUN-1 with scale at μ =m₄₁/2.
 - Seeds to re-calculate QCD scale and PDF+αs uncertainties for 13TeV (apart from YR2) !
 - The final goal is to have a public program MATRIX that can deal with all these processes, including leptonic decay and off shell effects, at the fully differential level (M. Grazzini).

Θ VBFNLO for pp \rightarrow ZZ (includes offshell) with approx. NNLO

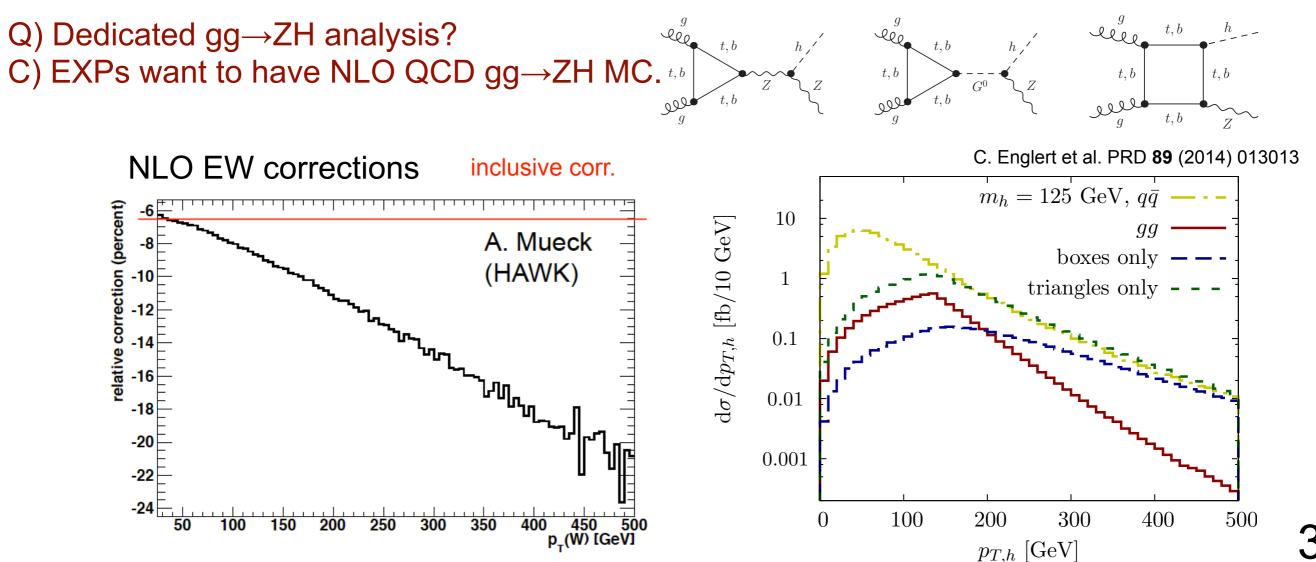
- M .Raychem et al. (arXiv:1504.05588).
- Can interface to Les Houches format.


NLO EW correction

- NLO EW should be important as NNLO QCD.
- Small for integrated observable but large in HE tail.
- RECOLA, OpenLoops, SHERPA and MUNICH, MadGraph5_aMC@NLO

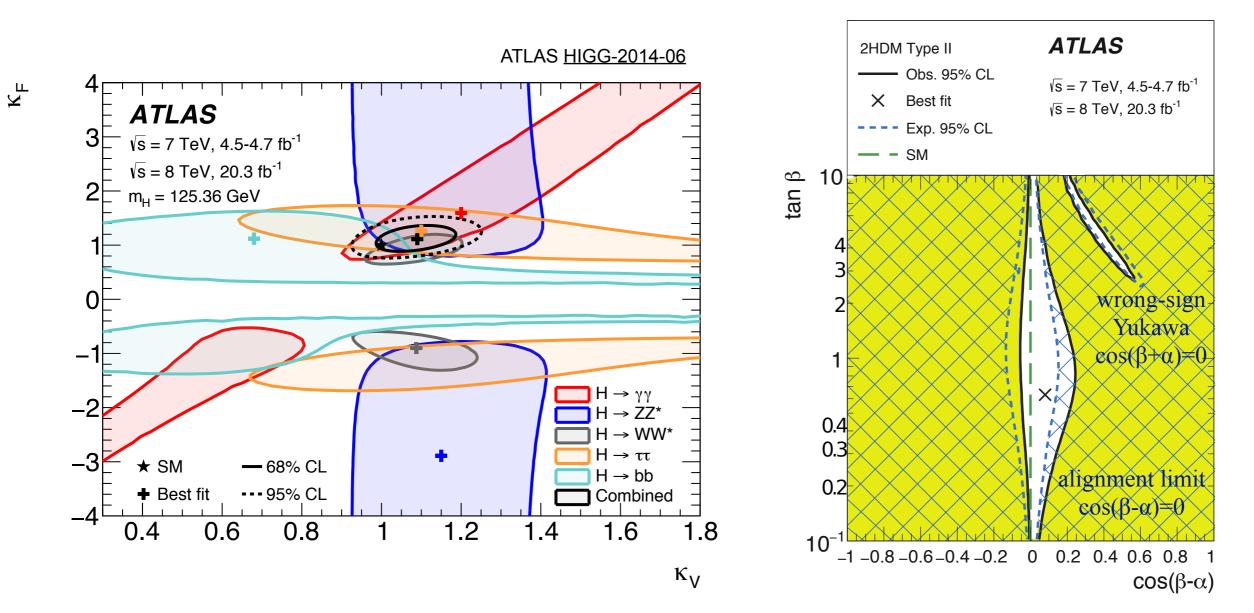
 \rightarrow Complete NLO EW for all VV(+jets) processes.

- gg→VV'


 - Largest source of uncertainty at NNLO. More important at higher energies.
 - Dominant part of 2-loop amplitudes recently calculated, Caola et al. (arXiv:1503.08759), von Manteuffel et al. (arXiv:1503.08835).
 - See Expect full NLO corr. soon. NLO MC development ?

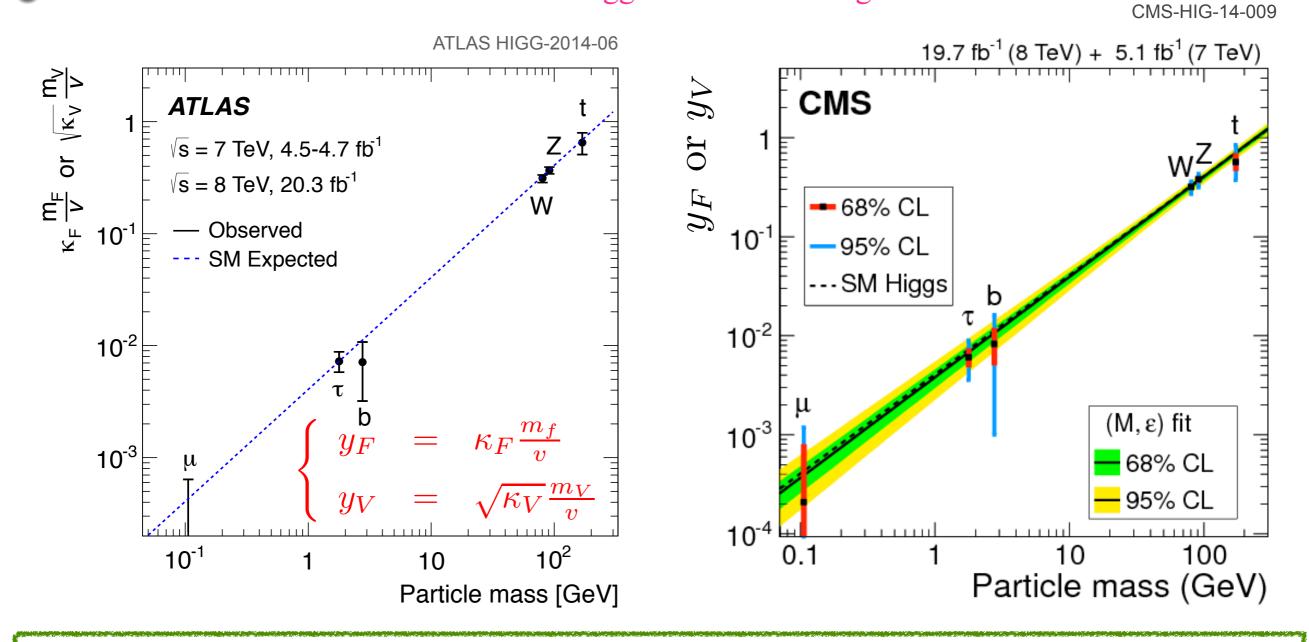
8. gg \rightarrow VV, gg \rightarrow HZ via box-diagram

Higgs p_T in VBF and WH/ZH


- NLO EW effect on Higgs p_T in VBF, WH/ZH and dynamical scale issue.
- Prescription and reweighting tool at <u>ATLAS Higgs XS TWiki page</u>.
 - Solution Needs to take into account Higgs p_T dependence of NLO EW radiative correction via MC reweighting (cf. irrelevant in case of ggF). \rightarrow Reweight !
 - Solution $\mathbf{\Theta}$ Largely different Higgs p_T in $gg \rightarrow ZH$.
 - \bigcirc gg \rightarrow HZ (LO) is now available in POWHEG version 2.0.

9. Higgs Boson Coupling

On the sign of k_F (convention $k_V > 0$)


- **2** HDM/MSSM predicts $k_F < 1$, but $k_F > 1$ is possible in Little Higgs, Higgs triplet model.
- Germatic Different sign in up/down-type fermion is possible in limited parameter space in 2HDM/MSSM, ex. Type-II k_d = sin(β-α) cos(β-α)×tanβ.
- Geometry "Wrong-sign Yukawa coupling", cos(β+α)=0.
- Solution Composite top-quark that could give $\lambda_{top-bottom} < 0$ but for the light quarks it would be much more complicated.
- \mathbf{Q} k_F<0 in EFT would require very large higher-dimensional operators.

ATLAS <u>HIGG-2015-03</u>

Couplings versus Mass - Higgs-gauge boson and Yukawa -

- Electroweak symmetry breaking needs to explain:
 - Non-zero mass of W/Z gage bosons and fermions and unitarity conservation below 1 TeV.
- Non-linear relation would indicate the Higgs sector is not single doublet.

LHC wants to add Higgs self-coupling λ and fermion coupling $H \rightarrow \mu^+ \mu^-$, cc, etc. (e⁺e⁻ hopeless).

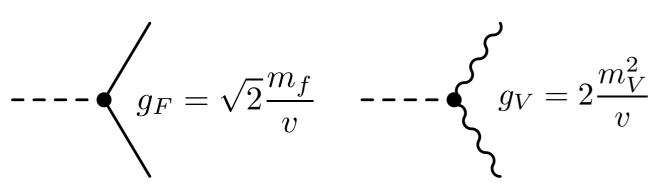
Note on Coupling versus Mass relation

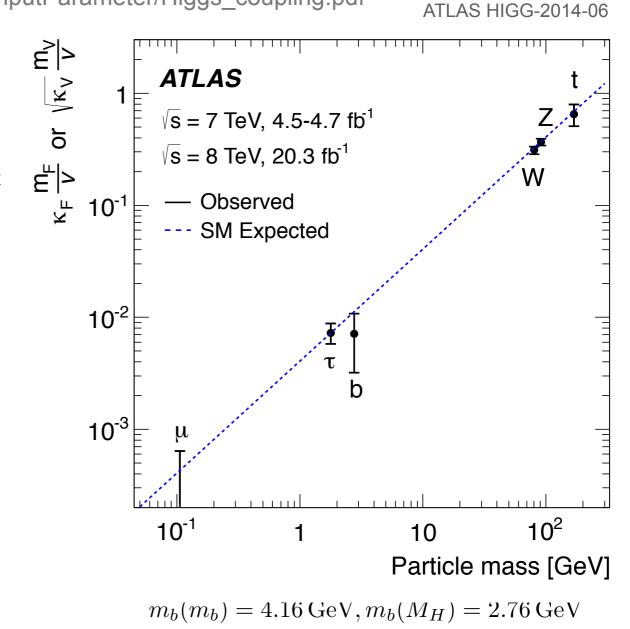
Discussions on quark mass (M. Spira)

Prescription for mass vs coupling plot

https://twiki.cern.ch/twiki/pub/LHCPhysics/LHCHXSWGSMInputParameter/Higgs coupling.pdf

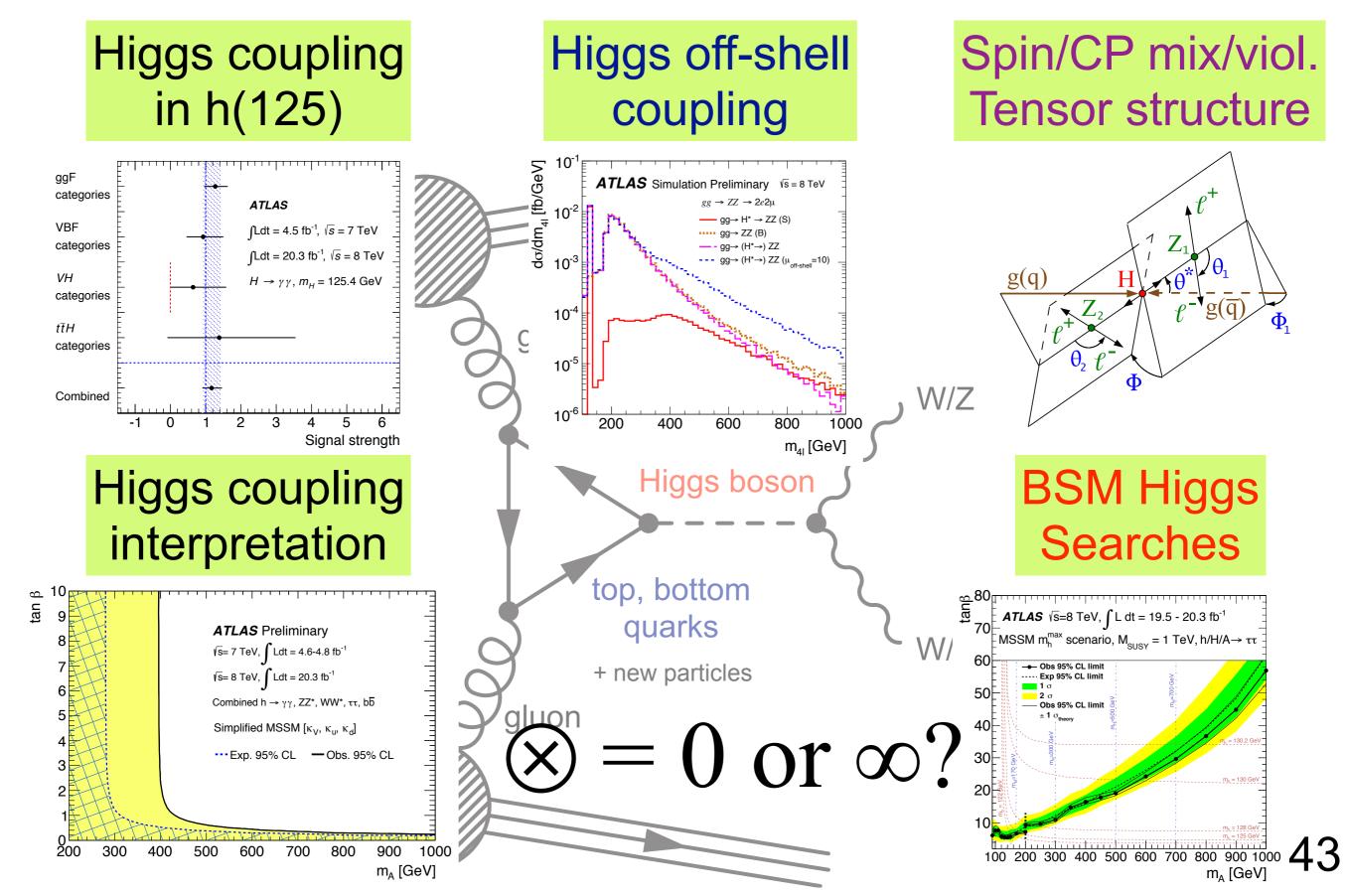
1. One can define quark mass for Yukawa coupling,


 $\bar{g}_Q(M_H), \bar{g}_Q(M_Q), g_Q^{\text{pole}}$


2. Though above are theoretically equivalent, running mass evaluated at Higgs mass scale is better to avoid the offset due to non-universal corrections in quarks and leptons,

$$\Gamma(H \to Q\bar{Q}) = \bar{g}_Q^2(M_H) \frac{3M_H}{16\pi} \left\{ 1 + \frac{17}{3} \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right\}$$

$$m_b(m_b) = 4.16 \,\text{GeV}, m_b(M_H) = 2.76 \,\text{GeV}$$


- 3. Use pole mass for top quark (172.5 GeV).
- 4. Use PDG values for leptons and W/Z boson masses.

Q) top-mass (172.5GeV) in MC?42

Higgs Analysis in Unified HEFT?

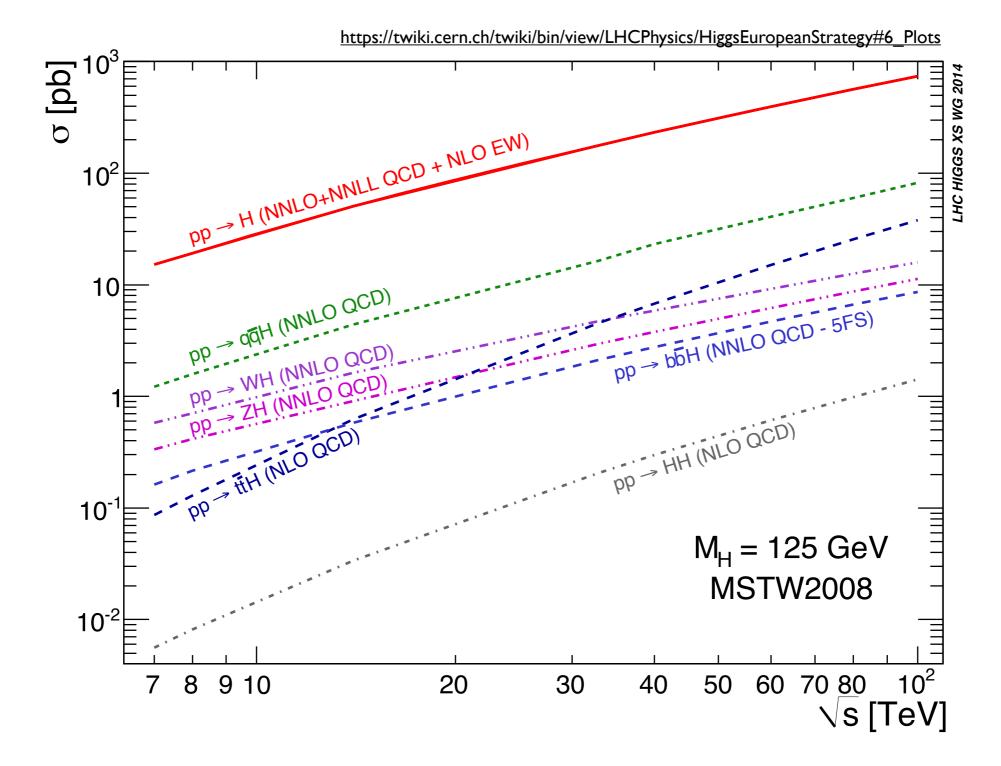
10. Higgs XS&BR for RUN-2

Processes

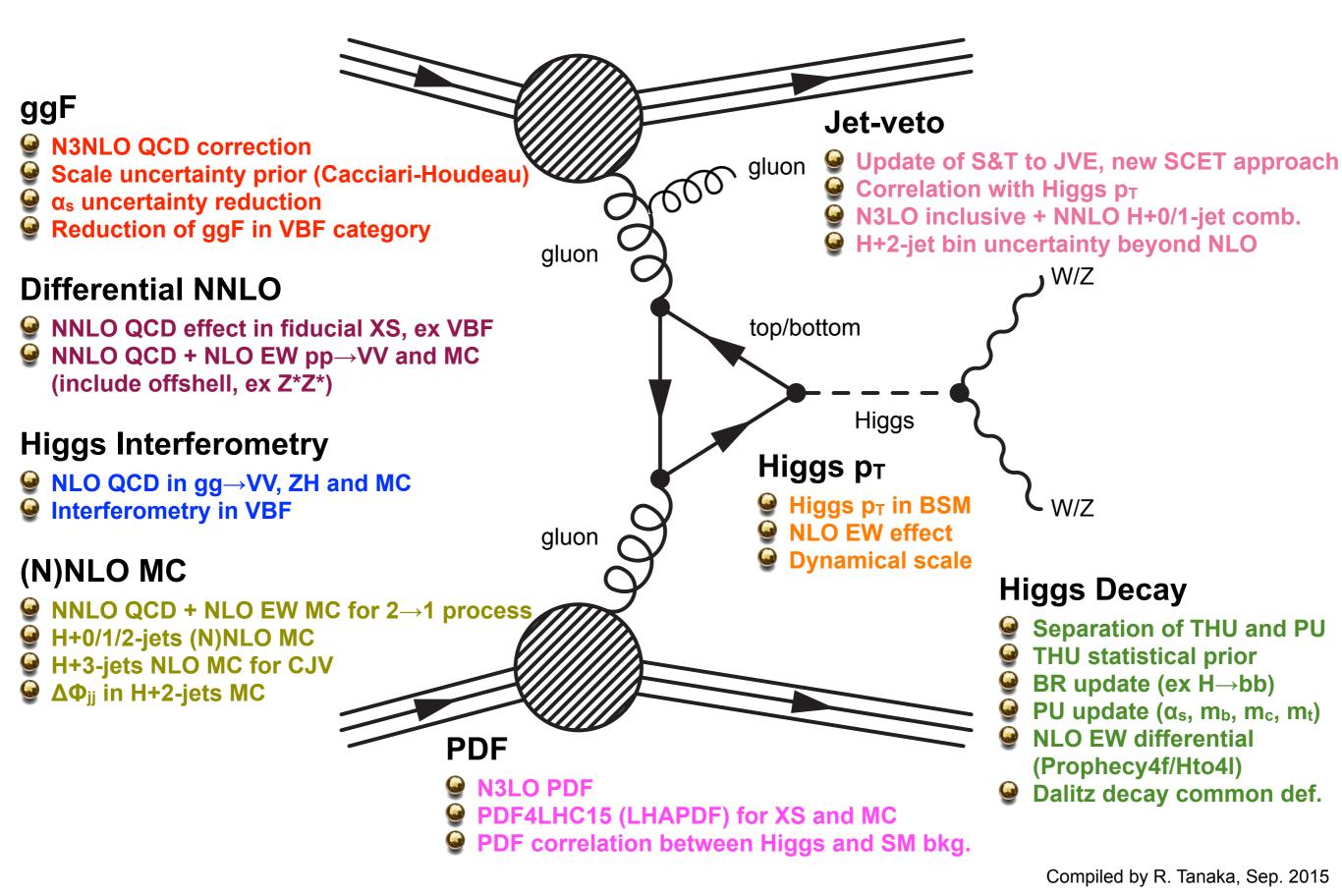
Q) Higgs mass range M_H=[60,1000]GeV?
 M_H=125±5GeV with 0.1GeV step?
 Q) Reference Higgs mass 125 or 125.09GeV?

- Needs to survey detectable processes for Higgs production and decay for RUN-2 and beyond !
- Tool development is also very important aspect.
- I. Main production processes
- II. Associated Higgs production with heavy quarks
- III. Associated Higgs production with single top quark
- IV. Higgs boson pair/triple production
- V. Higgs production in association with gauge bosons
- VI. Higgs production in association with a gauge boson and two jets
- VII. Gauge boson scattering
- VIII. Rare process and decay

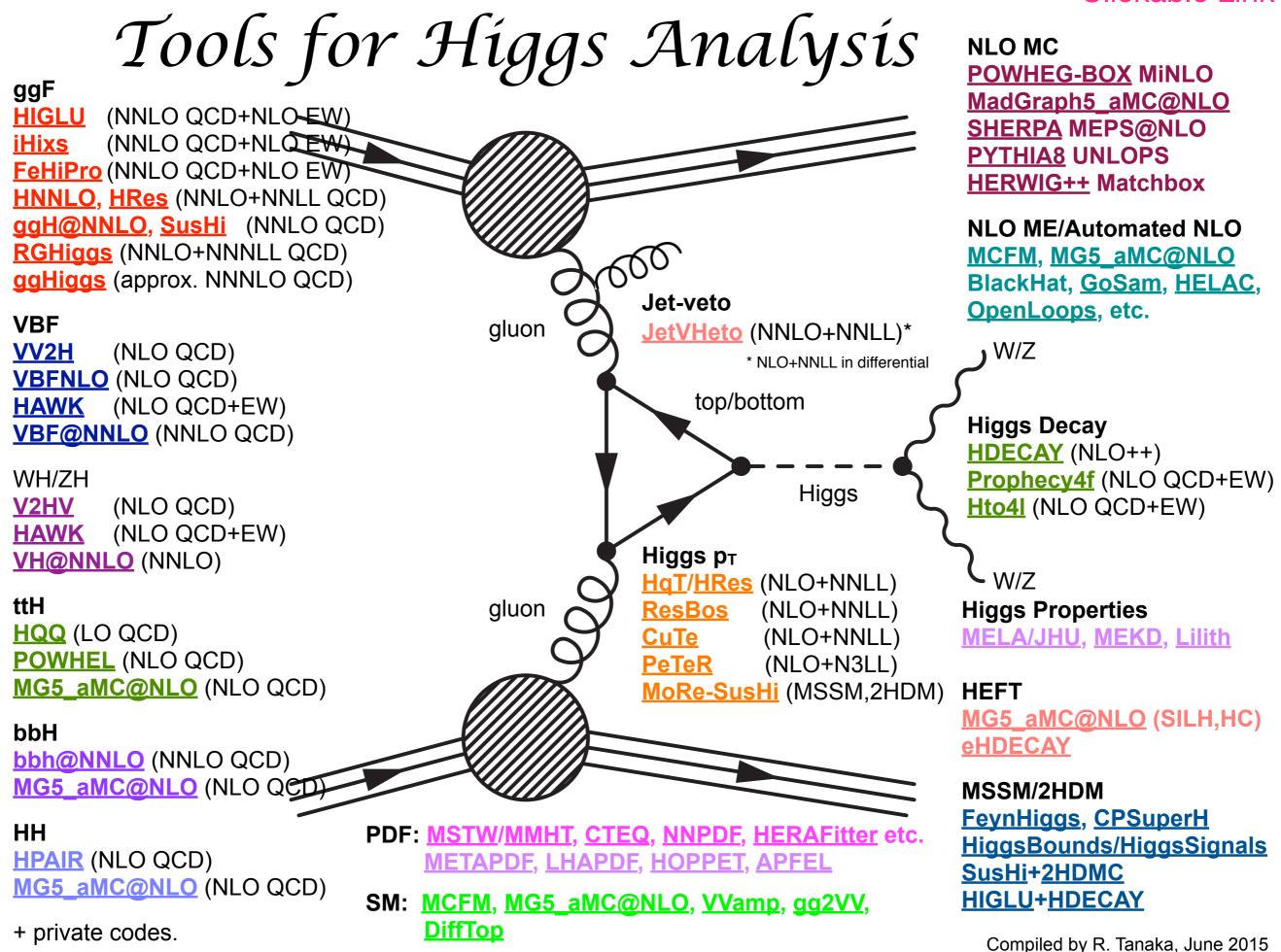
```
[H, qqH, VH]
[ttH/bbH/ccH]
[tHq, WtH, btH, tH, bH]
[HH, qqHH, VHH, ttHH, tjHH, HHH]
[VVH]
[qqHV]
```


 $[WW \rightarrow WW, WW \rightarrow HH, etc.]$

 $[qq \rightarrow H\gamma, t \rightarrow cH, etc.]$


+ any other process ? Q) Recalculation of SM BR with new SM inputs ? $(\alpha_s=0.119\rightarrow 0.118, updated quark mass)$ 45

FCC-hh


Q) Different theory consideration needed for 100TeV?

Leftover from RUN-1 and challenge for RUN-2

Clickable Link

backup

Frequently asked question: which M_H for μ ?

- Pay attention to M_H when discussing the μ -value !
- Total cross section and BR are changing slowly for M_H =125GeV.
 - BR(H $\rightarrow\gamma\gamma$) is at plateau.
 - But BR($H \rightarrow WW, ZZ$) are changing rapidly due to phase space.

		$\int_{C} 10 \qquad \qquad \sqrt{s} = 8 \text{TeV}$
Process	do/dM, dBR/dM	$\begin{array}{c} H \\ H $
$\sigma(ggF+VBF+VH+ttH+bbH)$	-2%/GeV	× $VBF H \rightarrow \tau^+ \tau^ VWV \rightarrow \Gamma Vqq$ $TVqq$ $VW \rightarrow I^+ v \bar{v}$
BR(H→bb,ττ,cc,μμ)	-3%/GeV	
BR(H→gg)	-1%/GeV	10^{-1}
$BR(H \rightarrow \gamma \gamma)$	±0%/GeV	$ZZ \to I^{\dagger}I^{}\sqrt{v}$
$BR(H \rightarrow Z\gamma)$	+5%/GeV	10^{-2}
BR(H→WW)	+8%/GeV	
BR(H→ZZ)	+9%/GeV	10^{-3}
	@M _H =125GeV	$v = v_e, v_\mu, v_\tau$ q = udscb $ttH - ttbb$
		10 100 150 200 250

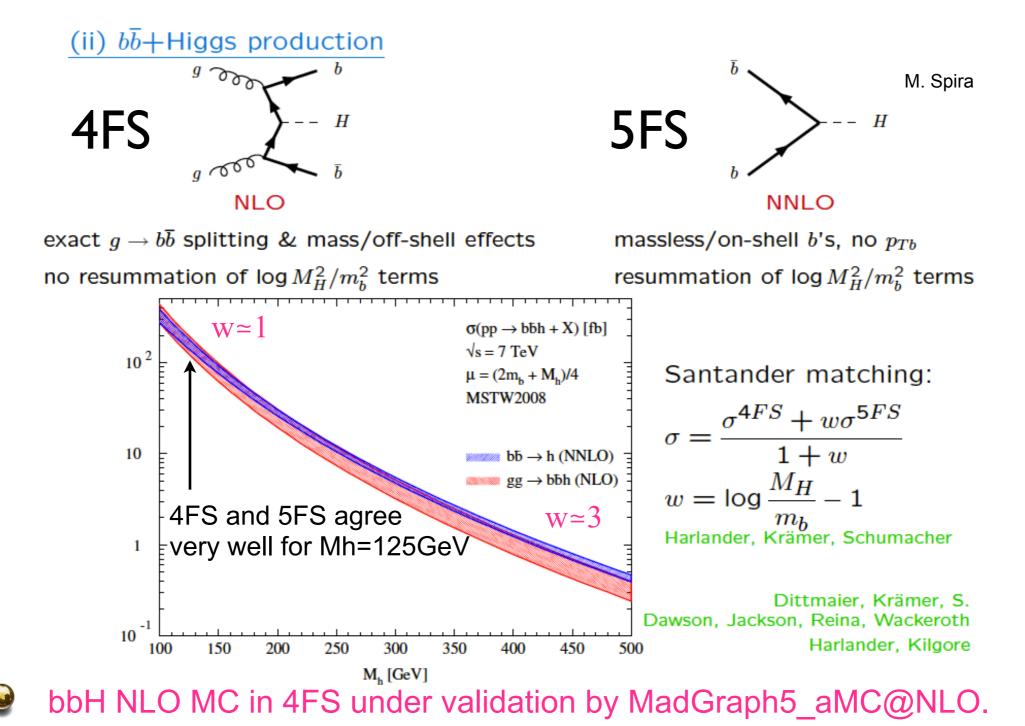
M_H [GeV]

Higgs boson decay uncertainty

Uncertainty in width

Channel	$\Gamma \ [MeV]$	$\Delta lpha_{ m s}$	$\Delta m_{ m b}$	$\Delta m_{ m c}$	$\Delta m_{ m t}$	THU
$H \to b \overline{b}$	2.35	$^{-2.3\%}_{+2.3\%}$	$^{+3.3\%}_{-3.2\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+2.0\%}_{-2.0\%}$
$\mathrm{H} \to \tau^+ \tau^-$	$2.57 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
$\mathrm{H} \to \mu^+ \mu^-$	$8.91 \cdot 10^{-4}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{-0.1\%}_{-0.0\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
$H \to c \overline{c}$	$1.18 \cdot 10^{-1}$	$^{-7.1\%}_{+7.0\%}$	$^{-0.1\%}_{+0.1\%}$	$^{+6.2\%}_{-6.1\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
$\mathrm{H} \to \mathrm{gg}$	$3.49 \cdot 10^{-1}$	$^{+4.2\%}_{-4.1\%}$	$^{-0.1\%}_{+0.1\%}$	$^{+0.0\%}_{-0.0\%}$	$^{-0.2\%}_{+0.2\%}$	$^{+3.0\%}_{-3.0\%}$
$\mathrm{H} \to \gamma \gamma$	$9.28 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+1.0\%}_{-1.0\%}$
$\mathrm{H}\to\mathrm{Z}\gamma$	$6.27 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+5.0\%}_{-5.0\%}$
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}$	$8.75 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$
$\mathrm{H} \to \mathrm{ZZ}$	$1.07 \cdot 10^{-1}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.5\%}_{-0.5\%}$
Total	4.07					

Channel	BR	$\Delta m_{ m c}$	$\Delta m_{ m b}$	$\Delta m_{ m t}$	$\Delta lpha_{ m s}$	PU	THU	Total
$H \to b \overline{b}$	$5.77 \cdot 10^{-1}$	$^{-0.2\%}_{+0.2\%}$	$^{+1.1\%}_{-1.2\%}$	$^{+0.0\%}_{-0.0\%}$	$^{-1.0\%}_{+0.9\%}$	$^{+1.5\%}_{-1.5\%}$	$^{+1.3\%}_{-1.3\%}$	$^{+2.8\%}_{-2.8\%}$
$\mathrm{H} \to \tau^+ \tau^-$	$6.32 \cdot 10^{-2}$	$^{-0.2\%}_{+0.2\%}$	$^{-2.0\%}_{+2.1\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+1.4\%}_{-1.3\%}$	$^{+2.5\%}_{-2.4\%}$	$^{+3.6\%}_{-3.6\%}$	$^{+6.1\%}_{-6.0\%}$
$\mathrm{H} \to \mu^+ \mu^-$	$2.19 \cdot 10^{-4}$	$^{-0.2\%}_{+0.2\%}$	$^{-2.0\%}_{+2.1\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+1.4\%}_{-1.3\%}$	$^{+2.5\%}_{-2.5\%}$	$^{+3.9\%}_{-3.9\%}$	$^{+6.4\%}_{-6.3\%}$
$H \to c \overline{c}$	$2.91 \cdot 10^{-2}$	$^{+6.0\%}_{-5.8\%}$	$^{-2.1\%}_{+2.2\%}$	$^{+0.1\%}_{-0.1\%}$	$^{-5.8\%}_{+5.6\%}$	$^{+8.5\%}_{-8.5\%}$	$^{+3.8\%}_{-3.7\%}$	$^{+12.2\%}_{-12.2\%}$
$\mathrm{H} \to \mathrm{gg}$	$8.57 \cdot 10^{-2}$	$^{-0.2\%}_{+0.2\%}$	$^{-2.2\%}_{+2.2\%}$	$^{-0.2\%}_{+0.2\%}$	$^{+5.7\%}_{-5.4\%}$	$^{+6.1\%}_{-5.8\%}$	$^{+4.5\%}_{-4.5\%}$	$^{+10.6\%}_{-10.3\%}$
$\mathrm{H} \to \gamma \gamma$	$2.28 \cdot 10^{-3}$	$^{-0.2\%}_{+0.2\%}$	$^{-2.0\%}_{+2.1\%}$	$^{+0.0\%}_{+0.0\%}$	$^{+1.4\%}_{-1.3\%}$	$^{+2.5\%}_{-2.4\%}$	$^{+2.9\%}_{-2.9\%}$	$^{+5.4\%}_{-5.3\%}$
$\mathrm{H} \to \mathrm{Z} \gamma$	$1.54 \cdot 10^{-3}$	$^{-0.3\%}_{+0.2\%}$	$^{-2.1\%}_{+2.1\%}$	$^{+0.0\%}_{-0.1\%}$	$^{+1.4\%}_{-1.4\%}$	$^{+2.5\%}_{-2.5\%}$	$^{+6.9\%}_{-6.8\%}$	$^{+9.4\%}_{-9.3\%}$
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}$	$2.15 \cdot 10^{-1}$	$^{-0.2\%}_{+0.2\%}$	$^{-2.0\%}_{+2.1\%}$	$^{-0.0\%}_{+0.0\%}$	$^{+1.4\%}_{-1.4\%}$	$^{+2.5\%}_{-2.5\%}$	$^{+2.2\%}_{-2.2\%}$	$^{+4.8\%}_{-4.7\%}$
$\mathrm{H} \to \mathrm{ZZ}$	$2.64 \cdot 10^{-2}$	$^{-0.2\%}_{+0.2\%}$	$^{-2.0\%}_{+2.1\%}$	$^{-0.0\%}_{+0.0\%}$	$^{+1.4\%}_{-1.4\%}$	$^{+2.5\%}_{-2.5\%}$	$^{+2.2\%}_{-2.2\%}$	$^{+4.8\%}_{-4.7\%}$


51

Uncertainty in BR

bbH - SM bbH cross section is not negligible! (forgotten...)

- SM bbH XS at <u>7TeV</u> and <u>8TeV</u> released for $M_H = 125.0$, 125.5 and 126.0 GeV.

Investigation Strategy Str

How about ccH ?

ccH/bbH cross section ratio estimation

1) parton distribution

From figure in PDG review, f(x) ratio between bottom/charm is about 1/1.5 for x = 1.0~1.5x10^-2 for mu=100GeV.

Sea quark PDF is the same for quark and anti-quark.

2) Yukawa coupling

The running mass ratio at Q2=MH^2 is Y_bottom/Y_charm = 4.5. Thus cross section ratio bbH/ccH = $(1/1.5)^2 * (4.5)^2 = 9$.

bbH cross section in variable or five flavor PDF is 1.1-1.2% of ggF, thus ccH contribution is O(0.1%) of ggF, being completely negligible.

12 18. Structure functions

PDG Review

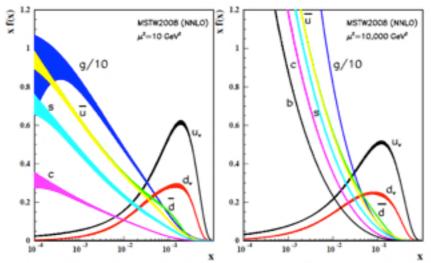


Figure 18.4: Distributions of x times the unpolarized parton distributions f(x)(where $f = u_v, d_v, \overline{u}, \overline{d}, s, c, b, g$) and their associated uncertainties using the NNLO MSTW2008 parameterization [13] at a scale $\mu^2 = 10 \text{ GeV}^2$ and $\mu^2 = 10,000 \text{ GeV}^2$.

ccH measurement

- 1. charm tag (difficult at hadron collider)
- 2. Higgs boson decays to quarkonia $BR(H \rightarrow J/\Psi + \gamma) = 2.5 \times 10^{-6}$ $BR(H \rightarrow Y + \gamma) = 1.4 \times 10^{-8}$ $^{\circ} ~50 \ \mu^+\mu^-\gamma \text{ events} @ 14 \text{ TeV}, 3ab^{-1}$ G. Bodwin et al. <u>Phys. Rev. D88 (2013) 053003</u>

BR and Rare Process&Decay

- Branching ratios
 - theory and parametric (α_s , $m_{b,c,t}$, $m_{H,}$ etc.) uncertainty reduction?
- Rare process and decay (common uncertainty assignment)
 CCH measurement
 - $qq \rightarrow H\gamma$
 - t→cH
 - quarkonia $J/\psi(Y)+\gamma$
 - $\gamma/W/Z+P$
 - ... etc.

barm tag (difficult at hadron collidor

- 1. charm tag (difficult at hadron collider)
- 2. Higgs boson decays to quarkonia $BR(H \rightarrow J/\Psi + \gamma) = 2.5 \times 10^{-6}$ $\stackrel{\circ}{\rightarrow} 4.7 J/\psi + \gamma$ events at 3 ab⁻¹ $BR(H \rightarrow Y + \gamma) = 1.4 \times 10^{-8}$ $\stackrel{\circ}{\rightarrow} ~50 \ \mu^+\mu^-\gamma \text{ events @ 14TeV, 3ab^{-1}}$ G. Bodwin et al. Phys. Rev. D88 (2013) 053003

VP mode	$\mathcal{B}^{ ext{SM}}$	VP^* mode	$\mathcal{B}^{ ext{SM}}$
$W^{-}\pi^{+}$	0.6×10^{-5}	$W^- \rho^+$	0.8×10^{-5}
W^-K^+	0.4×10^{-6}	$Z^0\phi$	2.2×10^{-6}
$Z^0\pi^0$	0.3×10^{-5}	$Z^0 ho^0$	1.2×10^{-6}
$W^-D_s^+$	2.1×10^{-5}	$W^{-}D_{s}^{*+}$	3.5×10^{-5}
W^-D^+	0.7×10^{-6}	W^-D^{*+}	1.2×10^{-6}
$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	2.2×10^{-6}

G. Isidori et al., PLB 728 (2014) 131