

2015 expectations and reality

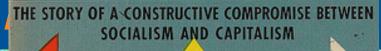
CERN

[Courtesy of Mauro Donegà]

MIDDLE WAY

KAPPAS FIDUCIAL CROSS-SECTIONS

EFFECTIVE FIELD THEORY WILSON COEFFICIENTS


Higgs Days at Santander 2015 Theory meets Experiment 14.-18. September

André David (CERN)

SWEDEN THE MIDDLE WAY

P24

KAPPAS FIDUCIAL CROSS-SECTIONS

PELIGAN BOOKS

MARQUIS W. CHILDS

Jonas

350

EFFECTIVE FIELD THEORY WILSON COEFFICIENTS

Higgs Days at Santander 2015 **Theory meets Experiment** 14.-18. September

André David (CERN)

Fiducial crosssections are not Physics.

Kappas cannot describe many SM deformations.

> Need to extend kappas to something between the other two.

Wilson coefficients are not physical.

6

The Next Standard Model

[http://cern.ch/go/dW6z]

 ${}_{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abe}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - {}_{4}^{1}g^{2}_{s}f^{abe}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + {}_{2}^{1}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + {}_{2}^{1}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + {}_{2}^{1}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g$ $\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2e^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m_{h}^{2} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \partial$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2v^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{v^{2}} + \frac{2M}{v}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{v^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{0}^{0}(W_{\nu}^{+}W_{\nu}^{-})] + \frac{2M^{2}}{v^{2}}(W_{\nu}^{+}W_{\nu}^{-}) + \frac{2M^{2}}{v^{2}}(W_{\nu}^{$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{$ $A_{\nu}(W_{n}^{+}\partial_{\nu}W_{n}^{-} - W_{n}^{-}\partial_{\nu}W_{n}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{n}^{-} - W_{\nu}^{-}\partial_{\nu}W_{n}^{+})] - \frac{1}{3}g^{2}W_{n}^{+}W_{n}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+} +$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}\dot{s}_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}\dot{W_{\nu}^{-}} - \ddot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\ddot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{-})) +$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}]$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}$ $\frac{1}{5}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{+}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}+\phi^{+}\partial_{\mu}H)]+\frac{1}{5}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\mu}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}))$ $W_{\mu}^{-}\phi^{+}) + i g s_w M A_{\mu} (W_{\mu}^{+}\phi^{-})$ $-W^{-}_{\mu}\phi^{+}) - igrac{1-2c_{w}^{2}}{2c_{w}}.$ $Z^0_\mu(\phi^+\partial_\mu\phi^--\phi^-\partial_\mu\phi^+)+igs_wA_\mu(\phi^+\partial_\mu\phi^--\phi^-\partial_\mu\phi^+)$ - $\frac{1}{3}g^2W_{+}^{+}W_{-}^{-}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{3}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{3}g^2\frac{s_w^2}{\omega^2}Z_a^0\phi^0(W_{+}^+\phi^- + \phi^-) + \frac{1}{3}g^2\frac{1}{\omega^2}Z_a^0\phi^0(W_{+}^+\phi^-) + \frac{1}{3}g^2\frac{1}{\omega^$ $W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}\tilde{s}_{a}^{*}Z_{0}^{0}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}q^{2}s_{w}A_{u}\phi^{0}(W_{a}^{+}\phi^{-} + W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}$ $g^{2} \frac{s_{w}}{s_{w}} (2c_{w}^{2}-1) Z_{u}^{a} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{u} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{k}^{2}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{\lambda}^{\lambda} (\gamma \partial + m_{k}^{\lambda}) u_{\lambda}^{\lambda} - \bar{d}_{\lambda}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{\lambda}^{\lambda} + g^{2} \bar{u}_{\lambda}^{\lambda} + g^{2} \bar{$ $igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{\gamma}^{\lambda}\gamma^{\mu}u_{\gamma}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{\gamma}^{\lambda})] + \frac{ig}{4c_w}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2$ $1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)$ $\gamma^5)\nu^{\lambda}) + (\bar{d}_j^s C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1+\gamma^5)u^{\lambda}_j)] + \frac{ig}{2\sqrt{2}} \frac{m_c^{\lambda}}{M} [-\phi^{\pm}(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{m_c^{\lambda}}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}e^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda})$ $[i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d$ $\gamma^{5} d_{i}^{\kappa}] + \frac{ig \sqrt{q}}{2 M_{N/2}} \phi^{-} [m_{d}^{\lambda} (\bar{d}_{i}^{\lambda} C_{\lambda \kappa}^{\dagger} (1 + \gamma^{5}) u_{i}^{\kappa}) +$ $m_u^{\kappa}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g\,u_{\lambda}^{\lambda}}{2\,M}H(\bar{u}_i^{\lambda}u_i^{\lambda}) - \frac{g\,u_{\lambda}^{\lambda}}{2\,M}H(\bar{d}_i^{\lambda}d_i^{\lambda}) + \frac{ig\,u_{\lambda}^{\lambda}}{2\,M}\phi^0(\bar{u}_i^{\lambda}\gamma^5 u_i^{\lambda}) - \frac{ig\,u_{\lambda}^{\lambda}}{2\,M}\phi^0(\bar{d}_i^{\lambda}\gamma^5 d_i^{\lambda}) + \bar{X}^+(\partial^2 - u_{\lambda\kappa}^{\lambda}) + \bar{X}^+($ $M^{2}X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{2})X^{0} + \bar{Y}\partial^{2}Y + iqc_{w}W^{+}_{w}(\partial_{u}\bar{X}^{0}X^{-} - \partial_{u}\bar{X}^{+}X^{0}) + iqs_{w}W^{+}_{w}(\partial_{u}\bar{Y}X^{-}) +$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{\mu}\bar{X}^{-}X^{0})$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{\omega^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c^{2}}{2\omega}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{\omega^{2}}\bar{X}^{0}\phi^{+}] + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X}^{0}H + \frac{1-2c^{2}}{\omega^{2}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{\omega^{2}}\bar{X}^{0}\phi^{+}] + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X}^{0}H + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}\bar{X}^{0}H + \frac{1}{\omega^{2}}\bar{X}^{0}\bar{X$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2w}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{iw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Next Standard Model

[http://cern.ch/go/dW6z]

 $\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\mu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{i})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{i})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\nu}g^{d}_{\nu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{i})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\nu}g^{d}_{\nu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{$ $\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2e^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m_{h}^{2} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \partial_{\mu} \phi^{+} \partial_{\mu} \phi$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2\sqrt{2}}M\phi^{0}\phi^{0} - \beta_{b}[\frac{2M^{2}}{\sqrt{2}} + \frac{2M}{2}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{\sqrt{2}}\alpha_{b} - igc_{w}[\partial_{\nu}Z_{a}^{0}(W_{\mu}^{+}W_{\nu}^{+})] + \frac{2M^{2}}{\sqrt{2}}(W_{\mu}^{+}W_{\nu}^{+}) + \frac{2M^{2}}{\sqrt{2}}(W_{\mu}^{+}W_{\mu}^{+}) + \frac{2M^{2}}{\sqrt{2}}(W_{\mu}^{+}W_{\mu}^{+})$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(\tilde{W}_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\tilde{\partial}_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{\mu}(W_{\mu}^{+} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{\mu}(W_$ $A_{\nu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}$ $-g^{2}c_{w}^{2'}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-}-Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-})+g^{2}s_{w}^{2'}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-}-A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})+g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}-A_{\mu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-})+g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\nu}^{+})+g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-})+g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\nu}^{+})+g^{2}s_{w}c_{w}$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}]$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}$ $\frac{1}{5}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)]+\frac{1}{5}g\frac{1}{2}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\mu}}{2}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)]$ $-W_{\mu}^{-}\phi^{+}) - ig \frac{1-2c_{w}^{2}}{2c_{w}}$ $W_{\mu}^{-}\phi^{+}) + igs_w MA_{\mu}(W_{\mu}^{+}\phi^{-}$ $-\phi^-\partial_\mu\phi^+)+igs_wA_\mu(\phi^+\partial_\mu\phi^-+\phi^-\partial_\mu\phi^+) \frac{1}{4}g^2W_a^+W_a^-[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-]$ $\frac{1}{2}g^2 \frac{s_0}{s} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}\tilde{z}_{a}^{*}Z_{0}^{0}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}q^{2}s_{w}A_{u}\phi^{0}(W_{a}^{+}\phi^{-} + W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-})$ $g^{2} \frac{s_{w}}{s_{w}} (2c_{w}^{2}-1) Z_{u}^{a} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{u} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{k}^{2}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{\lambda}^{\lambda} (\gamma \partial + m_{k}^{\lambda}) u_{\lambda}^{\lambda} - \bar{d}_{\lambda}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{\lambda}^{\lambda} + g^{2} \bar{u}_{\lambda}^{\lambda} + g^{2} \bar{$ $igs_w A_{\mu} \left[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}u_{\cdot}^{\lambda}) - \frac{1}{3}(\bar{d}_{\cdot}^{\lambda}\gamma^{\mu}d_{\cdot}^{\lambda}) \right] + \frac{iw}{iw} Z_{0}^{0} \left[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}(\frac{4}{3}$ $(1 - \gamma^5)u_i^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_i^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{v}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda s}d_j^{s})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda s}d_j^{s})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{c}^{\lambda}\gamma^{\mu}(1$ $\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{\kappa}^{\lambda}}{M}[-\phi^{\pm}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{\kappa}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda}] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}($ $-i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa)] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}$ $\gamma^5)d_i^\kappa] + rac{ig}{2\lambda\kappa/2}\phi^-[m_d^\lambda(\bar{d}_i^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_i^\kappa)$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] = \frac{g\,m_0^{\lambda}}{2\,M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) = \frac{g\,m_0^{\lambda}}{2\,M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig\,m_0^{\lambda}}{2\,M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) - \frac{ig\,m_0^{\lambda}}{2\,M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \bar{X}^+(\partial^2 - ig\,m_0^{\lambda}) + \bar{X}^+(\partial^2 - ig$ $M^{2}X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{4}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{u}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{u}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-})$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{\mu}\bar{X}^{-}X^{0})$ $igs_{w}A_{\mu}(\partial_{a}\bar{X}^{+}X^{+} - \partial_{a}\bar{X}^{-}X^{-}) - \frac{1}{3}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{4\pi^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{4}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{-}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{0}\phi^{+}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2w}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{iw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Something else

ENTREGAS

1ª ENTREGA LA MATERIA OCURA

La materia oscura

El elemento más misterioso del universo

2ª ENTREGA LOS AGUJEROS NEGROS

3ª ENTREGA EL BOSÓN DE HIGGS

>

a.david@cern.ch Higgs Days - 2015

<

Supplementing the Standard Theory

10

Concrete BSM

- SUSY: MSSM, NMSSM, etc.
- □ Possibly:
 - Light new physics.
 - Other states.
 - Non-decoupled.
- Specific benchmarks.LHC HXSWG WG3.

EFT expansion

- Add higher-dimensional operators.
- □ Assumes:
 - Heavy new physics.
 - Indirect effects, loops.
 - Decoupled.
- Generic interpretation.LHC HXSWG WG2.

Supplementing the Standard Theory

Concrete BSM

- SUSY: MSSM, NMSSM, etc.
- □ Possibly:
 - Light new physics.
 - Other states.
 - Non-decoupled.
- Specific benchmarks.
 LHC HXSWG WG3.

EFT expansion

- Add higher-dimensional operators.
- □ Assumes:
 - Heavy new physics.
 - Indirect effects, loops.
 - Decoupled.
- Generic interpretation.LHC HXSWG WG2.

Supplementing the Standard Theory

Concrete BSM

- SUSY: MSSM, NMSSM, etc.
- □ Possibly:
 - Light new physics.
 - Other states.
 - Non-decoupled.
- Specific benchmarks.LHC HXSWG WG3.

EFT expansion

- Add higher-dimensional operators.
- □ Assumes:
 - Heavy new physics.
 - Indirect effects, loops.
 - Decoupled.
- Generic interpretation.
 LHC HXSWG WG2.

Not all EFT are born the same

[http://cern.ch/go/L98Q]

Top-down EFT

- □ Full theory known:
 - Matching conditions bridge EFT and full theory.

Bottom-up EFT

- Full theory unknown:
 - Add operators as theory can calculate and data can discern.

Not all EFT are born the same

[http://cern.ch/go/L98Q]

Top-down EFT

 Full theory known:
 Matching conditions bridge EFT and full theory.

Bottom-up EFT

- Full theory unknown:
 - Add operators as theory can calculate and data can discern.

Not all EFT are born the same

Top-down EFT

[http://cern.ch/go/L98Q]

 Full theory known:
 Matching conditions bridge EFT and full theory.

Bottom-up EFT

- Full theory unknown:
 - Add operators as theory can calculate and data can discern.

a.david@cern.ch Higgs Days - 2015

EFT vs. Effective Lagrangians

16

arXiv.org > hep-ex > arXiv:1508.02507

High Energy Physics – Experiment

Constraints on non-Standard Model Higgs boson interactions in an effective field theory using differential cross sections measured in the $H \rightarrow \gamma \gamma$ decay channel at $\sqrt{s} = 8$ TeV with the ATLAS detector

ATLAS Collaboration

- (Submitted on 11 Aug 2015)
- Let's look at the relevant references:
 - [3] Sec. 10.4 is titled "Effective Lagrangians for Higgs interactions".
 - □ [4] titled "Effective lagrangian analysis [...]".
 - □ [5] abstract "dimension-six operators in the effective Lagrangian".
 - □ [6] abstract "An effective [...] Lagrangian approach".
 - [7] an actual EFT basis that is not used in the preprint.
 - **[8]** titled "Effective Lagrangian for a light Higgs-like scalar".
 - [10] is titled "Phenomenology of the Higgs Effective Lagrangian via FeynRules".
 - [11] mentions in the abstract "parametrizing BSM effects with dimension-six operators".
 - [12] is the only one to mention "effective field theory" (in the abstract, not the title).
- □ Ref. [10] **neglects operators** by using "a set of [...] operators assumed to encompass all possible effects of new physics on the Higgs sector".
 - Whether this assumption is a good one depends on the goal: see, e.g., 1508.05060.

A taxonomy of dim-6 SMEFT operators

17

[Trott et al. JHEP 04 (2014) 159]

Class	$N_{ m op}$	CP-even			$CP ext{-odd}$		
		n_g	1	3	n_g	1	3
$1: X^{3}$	4	2	2	2	2	2	2
$2:H^6$	1	1	1	1	0	0	0
$3:H^4D^2$	2	2	2	2	0	0	0
$4: X^{2}H^{2}$	8	4	4	4	4	4	4
$5:\psi^2H^3+ ext{h.c.}$	-	$3n_g^2$	3	27	$3n_g^2$	3	27
$6:\psi^2XH+ ext{h.c.}$	· 8	$8n_g^2$	8	72	$8n_g^2$	8	72
$7:\psi^2 H^2 D$	8	$\frac{1}{2}n_g(9n_g+7)$	8	5 1	$\frac{1}{2}n_g(9n_g^2-7)$	1	30
$8 : (\overline{L}L)(\overline{L}L)$	5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126
$8:(\overline{R}R)(\overline{R}R)$	7	$\frac{1}{8}n_g(21n_g^3+2n_g^2+31n_g+2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195
$8 : (\overline{L}L)(\overline{R}R)$	8	$4n_g^2(n_g^2+1)$	8	36 0	$4n_g^2(n_g-1)(n_g+1)$	0	288
$8:(\overline{L}R)(\overline{R}L)$	1	n_g^4	1	81	n_g^4	1	81
$8:(\overline{L}R)(\overline{L}R)$	4	$4n_g^4$	4	324	$4n_g^4$	4	324
8 : All	25	$rac{1}{8}n_g(107n_g^3+2n_g^2+89n_g+2)$	25	1191	$rac{1}{8}n_g(107n_g^3+2n_g^2-67n_g-2)$	5	1014
Total	59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$	53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149

Table 2. Number of *CP*-even and *CP*-odd coefficients in $\mathcal{L}^{(6)}$ for n_g flavors. The total number of coefficients is $(107n_g^4 + 2n_g^3 + 135n_g^2 + 60)/4$, which is 76 for $n_g = 1$ and 2499 for $n_g = 3$.

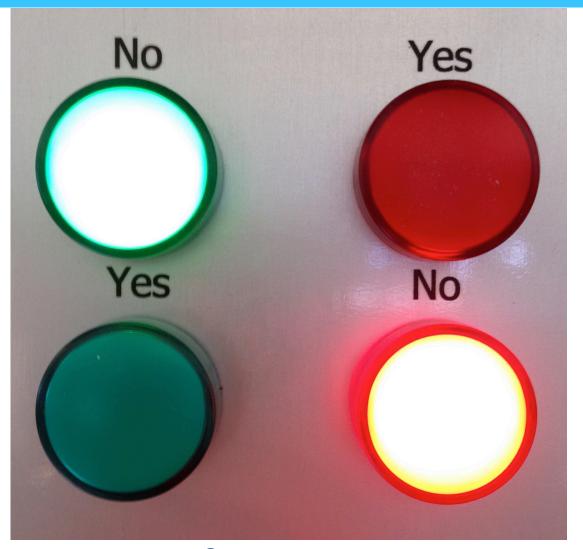
- \square From 2499 dim-6 operators to ${\sim}60$ operators.
 - Symmetries guide the culling:
 - Flavour, ~custodial, CP.
 - Each assumption needs testing measurements/observables.
- □ But to go down from \sim 60:
 - Guidance from experimental sensitivity.
 - Use complementary information:
 - LEP, Tevatron, etc experimental constraints.
 - aTGC/aQGC, top quark, EDM searches, etc.

19

□ From 2499 dim-6 operators to ~60 operators.

Symmetries guide the culling: Flavour, ~cEFJal, CUts across Each assumption needs testing measurements/observables. colliders (ee, eh), But to go down from ~60: sectors (multi-bosons, top), Use complementary information: and searches (LFV, EDM)... OGC to

a.david@cern.ch Higgs Days - 2015

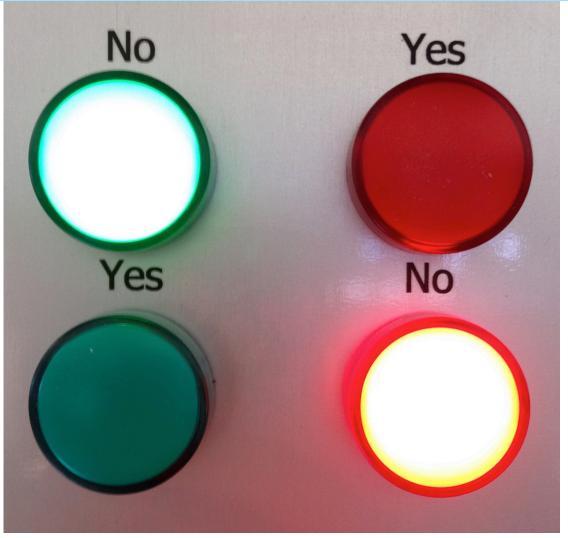

legenerator.net

ITEORDERS.

Summary: Effective Lagrangians

CERN

21



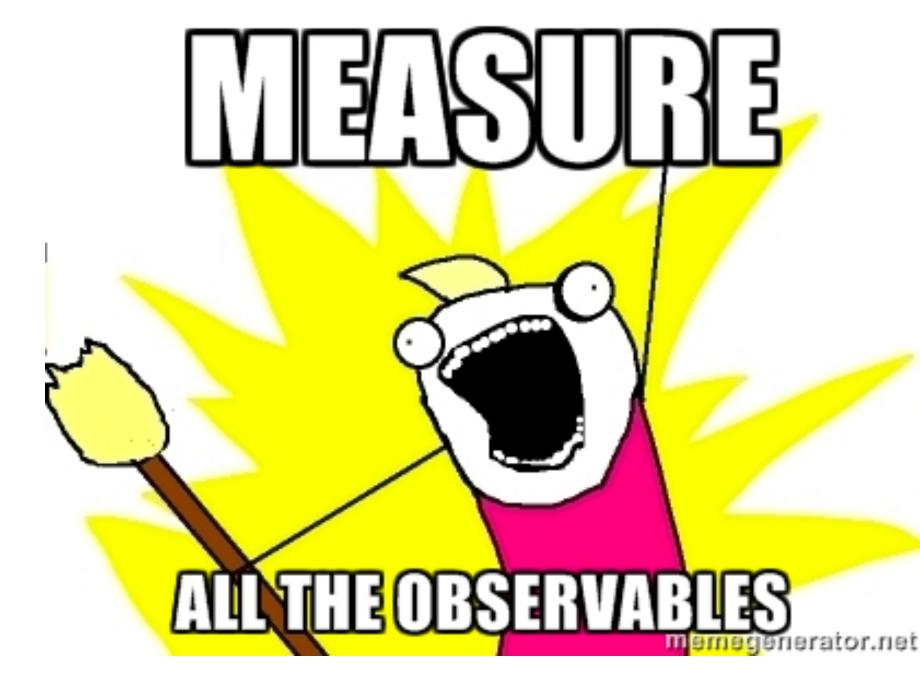
Summary: Effective Lagrangians

Can't we just fit one operator at a time?

Are we ready to do the global fit?

Higgs Days - 2015

a.david@cern.ch

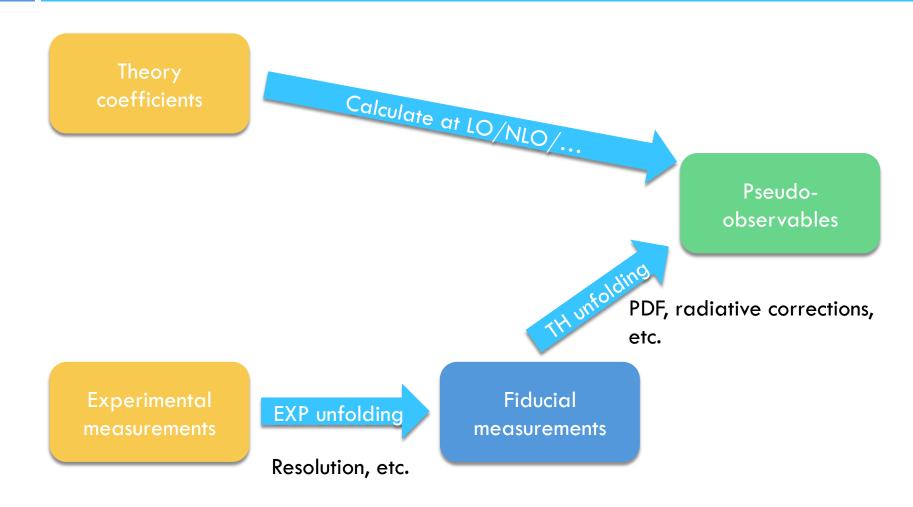


Summary: Effective Lagrangians

Can't we just fit one operator at a time?

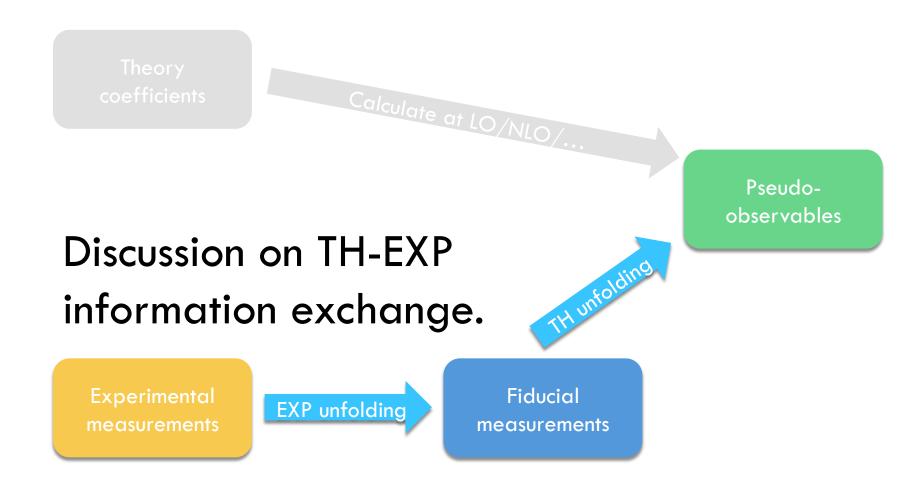
Are we ready to do the global fit?

The need for the middle way

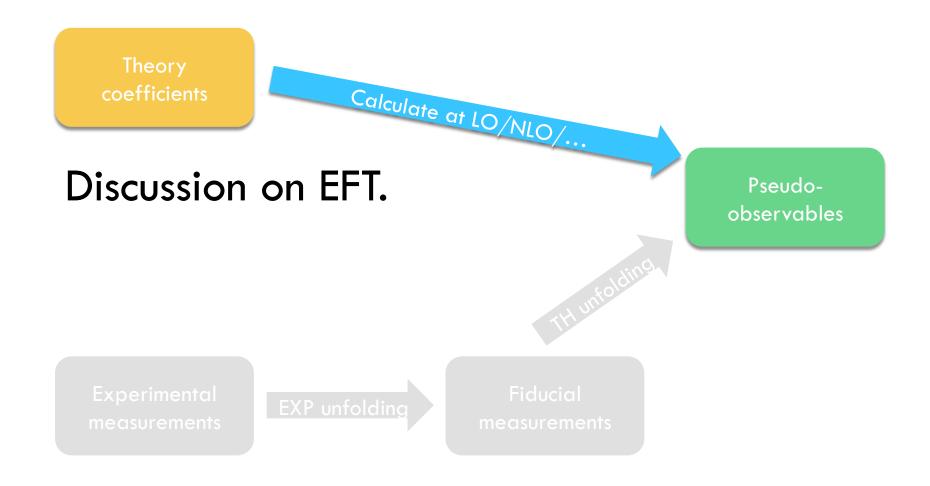

- **EFT** is all-encompassing, calculable, and evolving.
 - But too costly to redo all analyses if/when higher order calculations become available.
- Fiducial cross-section could be produced differentially for many quantities.
 - **But** no physical interpretation of every single bin by itself.

The middle way: pseudo-observables (PO).

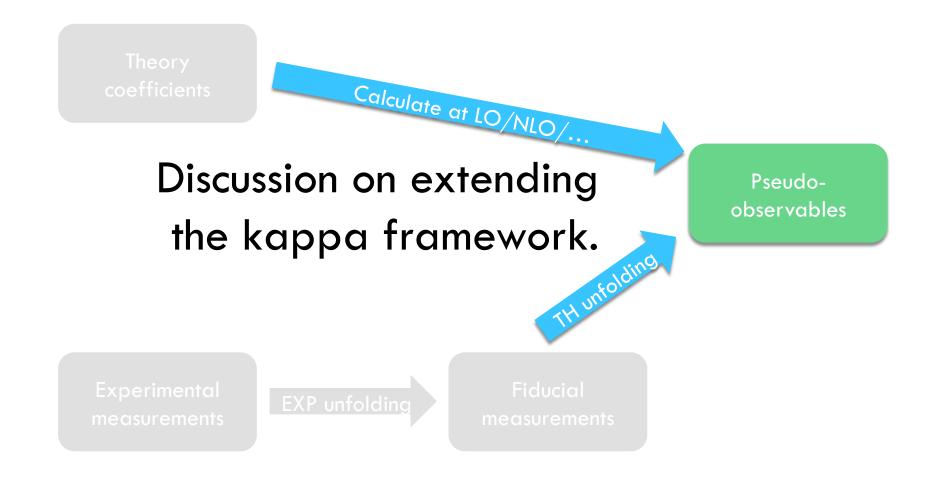
LEP-inspired scheme where theory and experiment intersect at clearly-defined points.



With some LEP inspiration



With some LEP inspiration

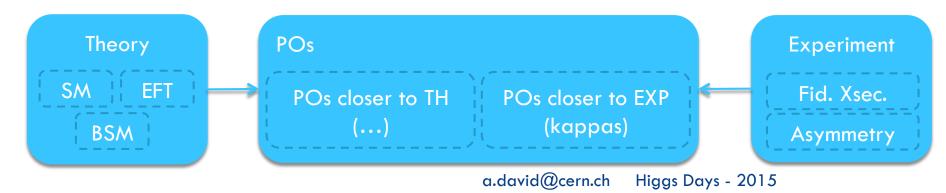

With some LEP inspiration

30

With some LEP inspiration

From kappas that fit little stuff...

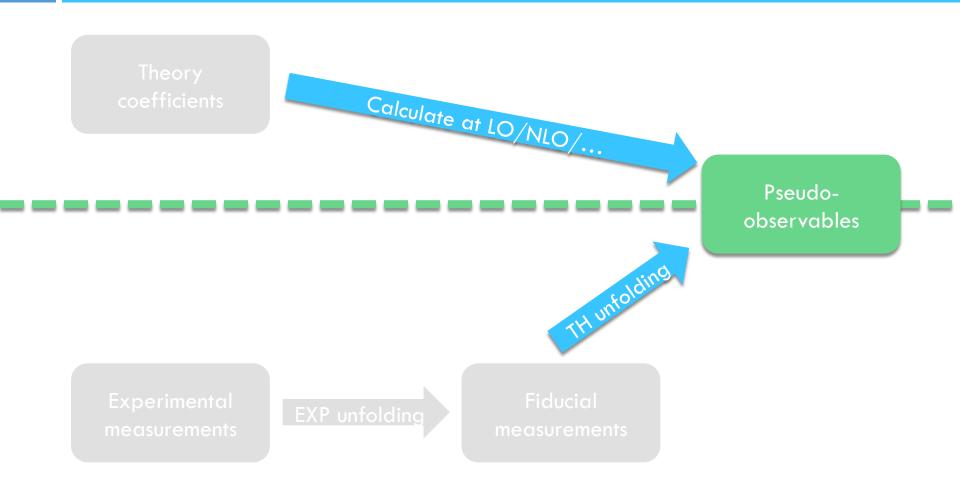
31


...to kappas that fit more stuff.

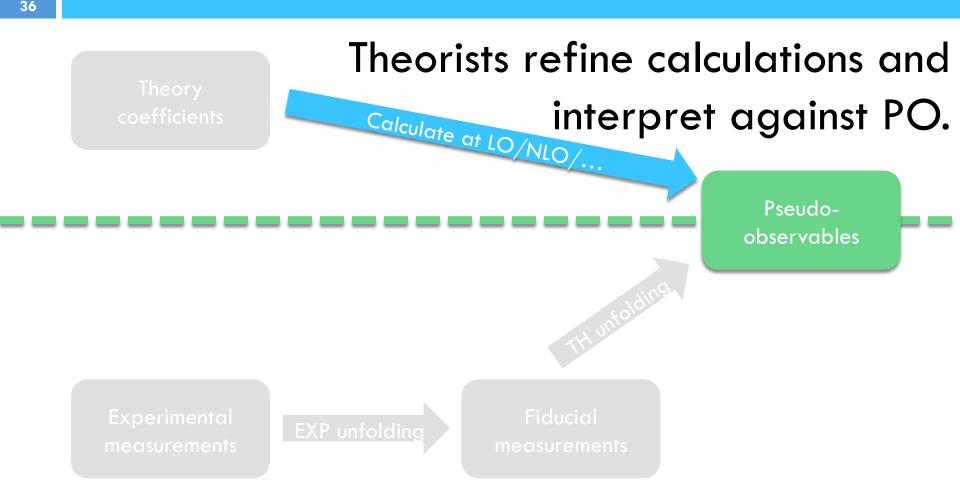
Kappas might have been our first POs

- Kappas must be extended to:
 - Differential quantities.
 - Remove some assumptions.
 - Cover smooth deviations from the SM.
- With better/more POs, kappas may remain as part of the PO framework:

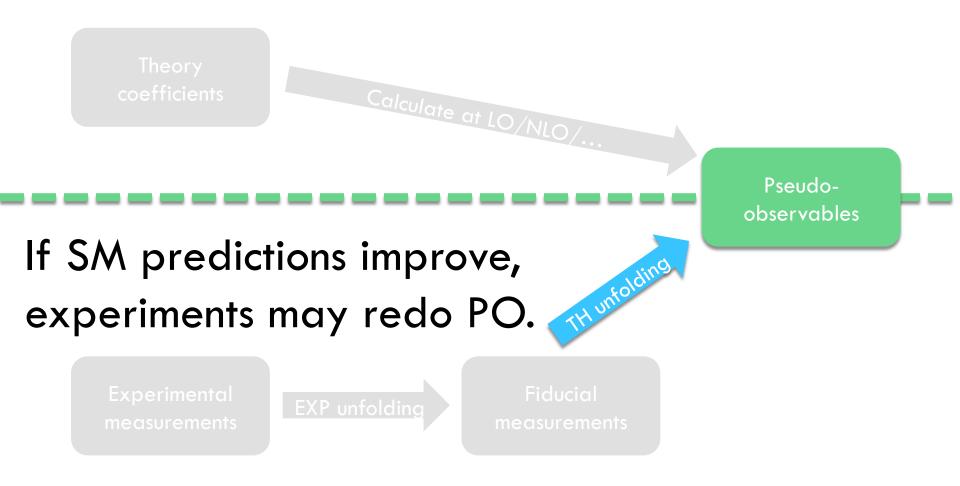
Inspiration for building PO


If we assume that:
Next SM ~ | dim-4 + dim-6 + dim-8 + ... |²

Then POs can be motivated to parametrize: δ(PO_i) ~ (Data – d4²) = d4×d6 + d6² + d4×d8 +



The middle way in action



The middle way in action

The middle way in action

Proposition 1:

38

- **EXP** can (sort of) fit parameters of models to data.
- **TH** can fit parameters of models to (sort of) data.
- □ Proposition 2:
 - **EXP** do not want (to produce) $10^3 \times 10^3$ covariances.
 - **TH** do not want (to digest) $10^3 \times 10^3$ covariances.

□ Synthesis:

We have to get (our act) together and define PO.

Proposition 1:

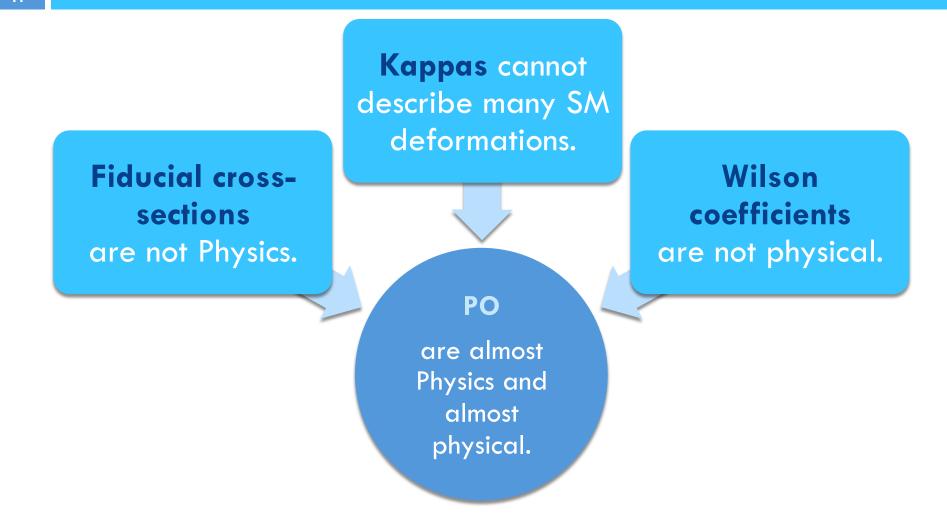
39

- **EXP** can (sort of) fit parameters of models to data.
- **TH** can fit parameters of models to (sort of) data.
- □ Proposition 2:
 - **EXP** do not want (to produce) $10^3 \times 10^3$ covariances.
 - **TH** do not want (to digest) $10^3 \times 10^3$ covariances.

□ Synthesis:

We have to get (our act) together and define PO.

□ Proposition 1:


40

- **EXP** can (sort of) fit parameters of models to data.
- **TH** can fit parameters of models to (sort of) data.
- □ Proposition 2:
 - **EXP** do not want (to produce) $10^3 \times 10^3$ covariances.
 - **TH** do not want (to digest) $10^3 \times 10^3$ covariances.

□ Synthesis:

We have to get (our act) together and define PO.

are almost Physics and almost physical.

PC

Decay: smooth deformations from power expansion. (Gino)

Production: template cross sections. (Michael) Have an idea? Ihc-higgspropertiesconvener@cern.ch

- What is EFT and what is an Effective Lagragian:
 - "One operator at a time" phenomenology useful to explore the operator phase-space.
 - **Global approach** mandatory when interpreting data.
- What to do with data:
 - **Data results** should be comprehensively reported.
 - Pseudo-observables: calculable, measurable, compressing redundant information.

As seen on (Spanish) TV

VENTAJAS DE SER SUSCRIPTOR

CERN