Stefan Liebler DESY Hamburg

SusHi News - NMSSM, p_T , $1/m_t$, N^3 LO, CP

Santander - Sept. 2015 - Picture from 2011

SusHi (SuperSymmetric Higgs) allows to calculate neutral Higgs boson production XS through **gluon fusion** and **bottom-quark annihilation** (5FS) in the SM, the 2HDM and the MSSM. [Harlander Liebler Mantler '12: http://sushi.hepforge.org]

Bottom-quark annihilation:

Gluon fusion:

extensively used in the LHCHXSWG with links to FeynHiggs and 2HDMC

Stefan Liebler 2 / 23

New in SusHi 1.5.0 (March 2015) and recent add-ons

Served SusHi!

Stefan Liebler 3 / 23

Implementation of the real NMSSM in SusHi: [Liebler '15] What is new in the real NMSSM compared to the real MSSM?

The superpotential includes the singlet field \hat{S} , which generates μ dynamically:

$$W_{\rm NMSSM} = W_{\rm MSSM,no\mu} - \epsilon_{ab} \lambda \hat{S} \hat{H}_d^a \hat{H}_u^b + \frac{1}{3} \kappa \hat{S}^3$$

We expand the Higgs sector according to

$$H_{d/u} = \frac{1}{\sqrt{2}}(v_{d/u} + H_{d/u}^R + iH_{d/u}^I), \quad S = \frac{1}{\sqrt{2}}(v_s + S^R + iS^I)$$

and thus generate an effective μ -term:

$$\mu = \frac{1}{\sqrt{2}} \lambda v_s$$

The physical mass eigenstates are obtained through the rotations:

Mass eigenstates = Mixing matrix · Gauge eigenstates

CP-even sector:
$$(H_1, H_2, H_3)^T = \mathcal{R}^S \cdot (H_d^R, H_u^R, S^R)^T$$

CP-odd sector: $(G^0, A_1, A_2)^T = \mathcal{R}^P \cdot \mathcal{R}^G \cdot (H_d^I, H_u^I, S^I)^T$

Stefan Liebler 4/23

Relevant changes for Higgs production at the level of gauge eigenstates:

▶ Quark-Higgs couplings:

 \triangleright Gauge boson ($V \in \{Z, W\}$)-Higgs couplings (for electroweak corrections):

→ Neglecting squarks no new contributions compared to the MSSM.

▶ Squark-Higgs couplings:

Stefan Liebler 5 / 23

Implications for bottom-quark annihilation in the 5FS:

We proceed as in in the MSSM, i.e. calculate SM XS reweighted with the bottom-quark Yukawa coupling Y_b taking into account NMSSM Δ_b corrections: [Baglio et al. '13]

$$\begin{split} \tilde{Y}_b^{H_i} &= \frac{Y_b^{H_i}}{1 + \Delta_b} \left[1 + \Delta_b \left(\frac{\mathcal{R}_{i2}^S}{\mathcal{R}_{i1}^S \tan \beta} + \frac{\mathcal{R}_{i3}^S v \cos \beta}{\mathcal{R}_{i1}^S v_s} \right) \right], \quad i \in \{1, 2, 3\} \\ \tilde{Y}_b^{A_i} &= \frac{Y_b^{A_i}}{1 + \Delta_b} \left[1 + \Delta_b \left(-\frac{1}{\tan^2 \beta} - \frac{\mathcal{R}_{i+1, 3}^P v}{\mathcal{R}_{i+1, 2}^P v_s \tan \beta} \right) \right], \quad i \in \{1, 2\}. \end{split}$$
[Dittmaier Krämer Spira '03.

Similarly the 4FS cross section can be reweighted. Dawson Jackson Reina Wackeroth '04] Implications for gluon fusion in SusHi:

$$\begin{split} \text{MSSM} \quad & \sigma(pp \to \phi + X) = \sigma_{\text{NLO}}^{\text{MSSM}} (1 + \delta_{\text{EW}}^{lq}) + (Y_t^{\phi})^2 \left(\Delta \sigma_{\text{NNLO}}^{t,\text{SM},0} \right) \\ \to & \text{NMSSM} \quad & \sigma(pp \to \phi + X) = \sigma_{\text{NLO}}^{\text{NMSSM}} (1 + \delta_{\text{EW}}^{lq}) + (Y_t^{\phi})^2 \left(\Delta \sigma_{\text{NNLO}}^{t,\text{SM},0} \right) \end{split}$$

Some remarks further elaborated on the subsequent slides:

- ✓ Inclusion of NLO third generation squark contributions (on top of Δ_b)
- ✓ Inclusion of electroweak contributions by light guarks

Stefan Liebler 6 / 23

✓ Inclusion of elw. contributions by light quarks: [Aglietti Bonciani Degrassi Vicini '04 '10]

Relevant diagrams with $V \in \{W,Z\}$:

Definition of SUSY electroweak correction factor:

$$\begin{split} \delta_{\mathrm{EW}}^{lq} &= \frac{\alpha_{\mathrm{EW}}}{\pi} 2 \mathrm{Re}(\mathcal{A}^{\phi} \mathcal{A}^{\phi,\mathrm{EW}}) / |\mathcal{A}^{\phi}|^2 \\ \mathcal{A}^{\phi,\mathrm{EW}} &= -\frac{3}{8} \frac{x_W}{s_W^2} \left[\frac{2}{c_W^2} \left(\frac{5}{4} - \frac{7}{3} s_W^2 + \frac{22}{9} s_W^4 \right) A[x_Z] + 4 A[x_W] \right] g_V^{\phi} \end{split}$$
 Complex mass scheme: $x_V = (m_V - i \frac{\Gamma_V}{2})^2 / m_\phi^2$

Supersymmetry enters a^{ϕ} , for CP-even Higgs bos

Supersymmetry enters
$$g_V^\phi$$
 for CP-even Higgs bosons:
$$g_V^{Hi} = \mathcal{R}_{i1}^S \cos \beta + \mathcal{R}_{i2}^S \sin \beta$$

For moderate masses of SM-like Higgs results in similiar correction as SM electroweak correction factor (Actis Passarino Sturm Uccirati '08).

Stefan Liebler 7 / 23

✓ Inclusion of NLO squark contributions:

(semi-analytically) known in the MSSM: gluon-quark, gluon-squark, gluino-squark-quark contributions

[Spira Djouadi Graudenz Zerwas '95; Harlander Kant '05; Anastasiou Beerli Bucherer Daleo Kunszt '06; Aglietti Bonciani Degrassi Vicini '06; Mühlleitner Spira '06; Bonciani Degrassi Vicini '07; Anastasiou Beerli Daleo '08; Mühlleitner Spira Rzehak '10]

Challenge for gluino-quark-squark contributions: Five different masses: m_q , $m_{\tilde{q}1}$, $m_{\tilde{q}2}$, $m_{\tilde{g}}$, $p^2 = m_{\phi}^2$

- ▶ Taylor expansion in small Higgs mass:
 - \longrightarrow top-stop-gluino contribution $m_{\phi} \ll m_t, m_{\tilde{t}1}, m_{\tilde{t}2}, m_{\tilde{g}}$ [Harlander Steinhauser '03 '04 + Hofmann '05; Degrassi Slavich '08]
- ho Expansion in heavy SUSY masses: $m_{\phi}, m_{q} \ll m_{\tilde{q}_{1}}, m_{\tilde{q}_{2}}, m_{\tilde{g}}$
- Results by [Degrassi Slavich '10 + Di Vita '11 '12] implemented in SusHi for the MSSM:
- \rightarrow Adopted to the new contributions in the NMSSM, e.g. amplitudes:

$$\mathcal{H}_{d}^{R} = \lambda_{t} \left[-m_{t} \mu s_{2\theta_{t}} F_{t} + \ldots \right] + \ldots, \, \mathcal{H}_{u}^{R} = \lambda_{b} \left[-m_{b} \mu s_{2\theta_{b}} F_{b} + \ldots \right] + \ldots$$
$$\mathcal{S}^{R} = \lambda_{t} \left[-\frac{1}{\sqrt{2}} m_{t} \lambda v_{d} s_{2\theta_{t}} F_{t} \right] + \lambda_{b} \left[-\frac{1}{\sqrt{2}} m_{b} \lambda v_{u} s_{2\theta_{b}} F_{b} \right]$$

Stefan Liebler 8 / 23

Where does SusHi get the Higgs spectrum and the squark sector from?

ightarrow At first stage the user needs to provide simple SLHA-style input: $^{(*)}$

Specify model, Higgs $+\dots$

Provide squark sector (Check renorm. schemes!)

 $\begin{array}{l} \text{Specify Higgs mixing} \\ \mathcal{R}^S \colon \text{NMHMIX} \\ \mathcal{R}^P \cdot \mathcal{R}^G \colon \text{NMAMIX or} \\ \mathcal{R}^P \colon \text{NMAMIXR} \\ \text{Provide Higgs masses} \end{array}$

SusHi input: Scales, VEGAS, Individual contr., Renorm. schemes

```
Block SUSHI
             # model: 0 = SM, 1 = MSSM, 2 = 2HDM, 3 = NMSSM
             # 11,12,13 = H1,H2,H3, 21,22=A1,A2
Block MINPAR # tanb
           2.00000000e+00
                                 # tanb
Block EXTPAR # SUSY parameters
           1.80000000e+03
                                 # M 3
           1.80000000e+03
                                 # A t
           7.40000000e+02
                                 # M Q3
           6.2000000E-01
                                 # lambda
   61
           2.0000000E+02
                                # mu eff
BLOCK NMHMIX # Scalar Higgs mixing matrix
           4.30591141E-01
                             # R H 11
           8.90438555E-01
                             # R H 12
          -1.47344659E-01
                            # R H 13
           2.66876782F-01
                             # R H 21
BLOCK NMAMIX # Pseudoscalar Higgs mixing matrix
          -6.74161819E-03
                            # R A 11
                # NMSSM Higgs masses
Block MASS
          1.25820962E+02
                            # H1
          2 10322178F+02
                            # H2
          4.13826725E+02
                            # H3
   36
          1.51099000E+02
                            # A1
          4.05344805E+02
                            # A2
Block ....
```

Stefan Liebler 9 / 23

^(*) Use any NMSSM spectrum generator.

Typical output in case of an inclusive XS:

NMSSM since V 1.5.0

Please cite the papers!

Useful information also to reweight e.g. bbh 4FS XS

```
# SusHi: Supersymmetric Higgs production through
                     gluon fusion and bottom-quark #
                     annihilation
                                1.5.0 Mar 2015
                     Version
# Date: 02.06.2015 at 10:36:17
# For the reconstructed input file, check below.
# Please cite the following papers (for this run):
# Harlander:2012pb
Block SUSHlinfo
            150
                      # SusHi version
Block SUSHlagh # Bon appetit
           4.01125098E+01
                            # aah XS in pb
Block SUSHIbbh # Bon appetit
           4.76446524E-01
                            # bbh XS in pb
Block XSGGH # ggh cross sec. in pb (w/o EW)
                            # IO w/ NIO PDFs
           1.33528853F+01
           3.18704352E+01
                            # NIO
Block XSGGHEFF # ggh xsec
           3.82118989F+01
                            # ggh@NLO
           4.45482479F+01
                            # ggh@NNLO
           5.80108895E-02
                            # electroweak factor
Block BBHREWEIGHT # top and bottom reweighting factors
           9.95540569E-01
                            # q t
                            # g b incl. 1/(1+Delta b)*..
           9.62577234E-01
```

Stefan Liebler 10 / 23

Flashing results for the inclusive cross section (CP-even Higgs bosons): Spectrum generator NMSSMCALC [Baglio et al., '13], Details: [1502.07972: Liebler '15]

$$\begin{split} \tan\beta &= 2, A_{\kappa} = -20\,\text{GeV}, \lambda = 0.62, \mu = 200\,\text{GeV}, m_{H^{\pm}} = 400\,\text{GeV}, M_3 = 1.5\,\text{TeV} \\ m_{\tilde{t}_1} &= 544.7\,\text{GeV}, m_{\tilde{t}_2} = 941.2\,\text{GeV}, m_{\tilde{b}_1} = 749.4\,\text{GeV}, m_{\tilde{b}_2} = 757.4\,\text{GeV} \end{split}$$

Stefan Liebler 11 / 23

Theory uncertainties: They are mostly equal to the MSSM case, see [Bagnaschi Harlander Liebler Mantler Slavich Vicini '14]

▶Renormalization and factorization scale uncertainties:

 Δ^{\pm} : Difference w.r.t. central/default choice

▶PDF+ α_s uncertainties (mostly function of m_ϕ):

 \triangleright from renormalization of Y_b

Stefan Liebler 12 / 23

SusHi allows to calculate η/y and p_T distributions at fixed order! However p_T distributions in $gg/b\bar{b} \to \phi$ diverge for $p_T \to 0$ at fixed order. Thus: Need for resummation of Sudakov logarithms $\sim \log(p_T/m_\phi)$

Bottom-quark annihilation:

- ✓ NNLL+NNLO in the 5FS [Belyaev Nadolsky Yuan '06, Harlander Tripathi Wiesemann '14]
- ✓ Implementation of 4FS+5FS in MG5_aMC@NLO at NLO QCD + PS [Frederix et al. '14]
 - \rightarrow Translation to extended Higgs sectors through reweighting with relative Y_b

Gluon fusion:

✓ NNLL+NNLO in the heavy top-limit

```
[Catani et al. '88, Yuan '92, Kauffman '92, Bozzi et al. '03 '05, Cao et al. '09, de Florian et al. '11, Catani Grazzini '11, Wang et al. '12]; in the context of SCET [Idilbi et al. '05, Gao et al. '05, Mantry et al. '10, Becher et al. '10 '12, Stewart et al. '11 '13] + Works from 2015
```

✓ Top-quark mass effects at NLL+NLO in SM Bottom-quark contributions very recently at NLL+NLO in SM (with $\log(p_T/m_b)$) [Bagnaschi Degrassi Slavich Vicini '11, Mantler Wiesemann '12, Grazzini Sargsyan '13, Baffi Monni Zanderighi '13, Bagnaschi Vicini '15]

Crucial question: Unphysical scale choices (Q_t, Q_b, Q_{tb})

Stefan Liebler 13 / 23

Approaches in extended Higgs sectors (i.e. the 2HDM, MSSM):

```
POWHEG (gg, H, MSSM, gg, H, 2HDM) - Resummation through parton shower [Bagnaschi Degrassi Slavich Vicini '11, Bagnaschi Vicini '15]

(POWHEG-SusHi [Mantler unpublished])

PaMCSusHi - SusHi amplitudes to MG5_aMC@NLO [Alwall et al. '14]

[Mantler Wiesemann '15]

MORe-SusHi (Momentum-Resummed SusHi) - Analytic resummation [Harlander Mantler Wiesemann '14]
```

→ Extension of the approaches to the NMSSM together with Hendrik Mantler and Marius Wiesemann (private versions exist)

Operation of aMCSusHi:

- ▶Perl script to set up MG5_aMC@NLO process folder linked to the SusHi library
- Control the scenario via "run card.dat"/check [1504.06625] for shower scales
- Decays in NWA through branching ratios in "shower_card.dat"

Operation of MoRe-SusHi: Additional information:

 \rightarrow Get binned p_T spectrum

```
BLOCK MORESUSHI
1 10000 # N (number of integrations, default: N=1000)
BLOCK DISTRIB2
1 15.40 # pT_Hmin (min. transv. mom. of Higgs)
2 205.40 # pT_Hmax (max. transv. mom. of Higgs)
5 10.40 # stepsize (stepsize of pT_distribution)
BLOCK SCALES
4 80.40 # Qres in GeV (Qres: resummation scale)
```

Stefan Liebler 14 / 23

Preliminary results from MoRe-SusHi and POWHEG-SusHi in the NMSSM:

Parameter point (see slide 10) with $\kappa=0.5$ and $m_{H_2}=297.5\,\mathrm{GeV}, m_{A_1}=166.5\,\mathrm{GeV}$

Resummation/Matching scale choice:

$$H_2$$
: $Q_t\,=\,59\,\mathrm{GeV},\,Q_b\,=\,39\,\mathrm{GeV},\,Q_{t\,b}\,=\,47\,\mathrm{GeV}$

$$A_1$$
: $Q_t = 49 \, \text{GeV}$, $Q_b = 27 \, \text{GeV}$, $Q_{tb} = 35 \, \text{GeV}$

fNLO: NLO fixed order result, AR: Analytic resummation with MoRe-SusHi

→ Further checks needed for (very) light scalars/pseudoscalars

Stefan Liebler 15 / 23

What will be part of SusHi 1.6.0?

In preparation: SusHi Bento - Beyond NNLO and the heavy-top limit together with Robert Harlander and Hendrik Mantler

Sushi 1.6.0 will incorporate w.r.t. gluon fusion

- \checkmark contributions of dimension-5 operators to $gg\phi$ vertex.
- ✓ $1/m_t$ corrections to incl. XS in heavy top-limit at different orders.
- ✓ soft expansion $(1-x)^n$ with $x=m_H^2/\hat{s}$ at different orders.
- ✓ N³LO contributions in soft expansion.

The latter three corrections solely affect the top contribution:

$$\sigma = \sigma_{\mathrm{NLO}} + \Delta_X \sigma^t$$
 with $\Delta_X \sigma^t = \sigma_X^t - \sigma_{\mathrm{NLO}}^t$

All three corrections come with full μ_R and μ_F -dependence.

Stefan Liebler 17 / 23

Dimension-5 operators (check also recent HIGLU implementation)

$$\mathcal{L} = \mathcal{L}_{\text{theory}} + \sum_{i=1}^{N_1} \frac{\alpha_s}{12\pi v} c_5^{1i} \, H_{1i} G^a_{\mu\nu} G^{a,\mu\nu} + \sum_{i=1}^{N_2} \frac{\alpha_s}{8\pi v} c_5^{2i} \, H_{2i} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

where $\mathcal{L}_{\text{theory}}$ describes any of the supported models. Together with <code>BLOCK FACTORS</code> you can access κ_t, κ_b and for example investigate the degeneracy between κ_t and c_5^H at NLO: Define $\sigma(p_T^{\text{cut}}) = \int_{p_T>p_\infty^{\text{cut}}} dp_T d\sigma/dp_T$ and look at

$$\mathbf{e} \ \sigma(p_T^-) = \int_{p_T > p_{T}^{\mathrm{cut}}} a p_T a \sigma / a p_T$$
 and look at

$$\frac{\sigma(p_T^{\text{cut}})}{\sigma(p_T^{\text{cut}})(\kappa_t = 1, \kappa_b = 0, c_5^H = 0)} = (\kappa_t + c_5^H)^2 + \delta \kappa_t c_5^H + \epsilon (c_5^H)^2 + \delta_{bt} \kappa_b \kappa_t + \delta_{bg} \kappa_b c_5^H + \epsilon_b \kappa_b^2$$

similar to

[Grojean Salvioni Schlaffer Weiler '13]

see also [Ellis et al. '87]

Stefan Liebler 18 / 23

 $1/m_t$ terms to incl. XS in the heavy top-limit (htl):

The heavy top-limit is known to be very precise for $m_H < 300 \,\text{GeV}$ (Diff. 1%). Still include $1/m_t^N$ contributions at NLO (N < 10) and NNLO (N < 6) to htl.

[Marzani et al. '08, Harlander Mantler Marzani Ozeren '09, Harlander Ozeren '09, Pak Rogal Steinhauser '09]

Partonic cross section $\hat{\sigma}$ (also channelwise possible $ij = \{gg, qg, q\bar{q}, qq, qq'\}$)

$$\hat{\sigma}^t = \sigma_0^t \sum_{k=0}^n \frac{\mathcal{T}_{N_k} \hat{\sigma}^{t,(k)}}{\mathcal{T}_{N_k} \sigma_0^t} + \sum_{k \geq n+1} \mathcal{T}_{N_k} \hat{\sigma}^{t,(k)} \,.$$

with the LO cross section σ_0^t and the expansion operator \mathcal{T}_{N_k} .

Convergence within $\hat{s} < 4m_t^2 \to {\rm matching}$ to high energy limit $\hat{s} \to \infty$ or $x \to 0$

Stefan Liebler 19 / 23

For the matching for $1/m_t$ terms and a possible extension to N³LO results SusHi now allows for a soft expansion around the threshold $x=m_H^2/\hat{s}$: Available orders at NLO and NNLO are $(1-x)^N$ with $N\leq 16$.

Expansion with operator
$$\mathcal{T}_N^x$$
: $x^a \mathcal{T}_N^x \left(\frac{\Delta \hat{\sigma}^t}{x^a}\right)$

An order x^a can be taken out. The setting -1 keeps soft terms $\delta(1-x)$ and $(\ln^k(1-x)/(1-x))_+$ only.

Plan: Include the N³LO results in soft expansion, see [Anastasiou et al. '15], still no soft-gluon resummation like [Schmidt Spira '15]

Stefan Liebler 20 / 23

Unprepared fish!

Gluon fusion in case of CP-violation in the Higgs sector (first in the MSSM) together with Shruti Patel and Georg Weiglein

Early work: CP-violation in squark loops [Dedes Moretti '99]

Admixture of h, H and A described through Z factors obtained by FeynHiggs

$$(\phi_1, \phi_2, \phi_3)^T = Z \cdot (h, H, A)^T$$

 \rightarrow CP-violation either enters through Z factors or squark loops. Form of the LO cross section:

etion:
$$+Z_HA_H^{t,b,\tilde{t},\tilde{b}}+Z_AA_A^{\tilde{t},\tilde{b}}|^2+|Z_AA_A^{t,b}|^2$$

Preliminary results showing $\sigma = \sigma_{\text{NNLO}}^{t,b} + \sigma_{\text{LO}}^{t,b,\tilde{t},\tilde{b}} - \sigma_{\text{LO}}^{t,b}$:

Stefan Liebler 22 / 23

SusHi allows to calculate neutral Higgs boson cross sections through gluon fusion and bottom-quark annihilation meanwhile in the SM, MSSM, 2HDM and the NMSSM. Soon we want to include

- ✓ dimension-5 operators to the gluon vertex.
- ✓ $1/m_t$ terms to the heavy top limit and soft expansion.
- ✓ N³LO results in soft expansion.

For differential distributions (in particular w.r.t. p_T) exist add-ons, namely

✓ (POWHEG-SusHi), MoRe-SusHi and aMCSusHi to resum logarithms.

On the long term we also study CP-violating effects.

Thank you for your attention!

Stefan Liebler 23 / 3