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Reopening the low (Ma tan3 ) window

[see e.g.: Arbey et al., 1303.7450; Djouadi+Quevillon, 1304.1787]
Appeal of the low (Ma, tanf3) region:

* For low Ma, extended Higgs sector potentially accessible at the LHC
* Forlow tanB, not yet ruled out by the H, A —> tau tau searches

* Away from the decoupling limit, sizable couplings of H, A to gauge bosons and h

Interesting Higgs phenomenology: H —>hh, H—> WW, H—>2Z, A—> Zh

However...
* AtlowtanB, My =125 GeV requires large stop masses Ms:

- For Ma=Ms, tanB =1 implies Ms = 108 — 1010 GeV

For low Ma, we might need an even larger Ms

This calls for the resummation of large logarithms in the EFT approach
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Effective THDM with heavy SUSY

[Haber+Hempfling, early 90s, (...), Lee+Wagner, 1508.00576]
Vo= m2, 00 + m2,ald, - [m%2<1>{<1>2 + h.c.]
A A
+71 (@]D1)2 + 72 (®ID2)? + A3 (D1®1)(D]D2) + Ay (P]D2) (PRI D)
A
+ {75 (@[®:)2 4 A6 (@]@1) + Ar (0)@s)] (@]@2) + h.c.}
1
M = A= —A3+M) = = (¢°+4'?
1) SUSY boundary 1 2 (A3 + A4) 1 (9°+9g°), (NOTE: loop
conditions at the 9 corrections)
scale Ms : Ay = —%, s = g = Ar = 0
2) RG evolution of all seven lambdas from Ms to the weak scale;
3) scalar mass matrix in terms of the weak-scale lambdas:
L1 = )\10% + 2Xgspcs + )\55%
, 5% —Sgcp , [ L1 Lo 2 2
M3 ) + v Lis = (A3+Ag)sgepg + Aecg + Arsj
—SpCp C/B L12 L22
Loy = )\23% + 2A7s5¢c3 + )\50%

Recently studied by Lee & Wagner, no public code available yet
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Two workarounds for the analysis of low-tanf3 scenarios

Combine the fixed-order calculation of FeynHiggs
* The “low-tb-high” scenario: with a partial resummation of large logs, then find a
set of SUSY parameters that lead to My = 125 GeV

Trade the knowledge of M for the element of the

Higgs mass matrix where the large logs arise, set
e The hMSSM approach: _

the other elements to their tree-level values, then

obtain simple formulae for My and alpha

We also compared the predictions of the two approaches for the Higgs masses
and mixing with the preliminary results of the EFT calculation by Lee and Wagner

(see Gabiriel’s talk later in the afternoon)



The “low-tb-high” scenario

[Sven Heinemeyer for the LHC-HXSWG]

FeynHiggs > 2.10.0 includes a (simplified) NLL resummation of large 10gs [see woligang’s talk]
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NOTE: the resummation procedure in FeynHiggs does not account for low y, M2 and Ma
The EFT calculation finds in general smaller My, than FeynHiggs.

Discrepancies about 2 GeV for tan > 5.5, much worse at lower tan3
(e.g., more than 10 GeV for tanB < 2)

EFT comparison:
[Lee+Wagner, 1508.00576]



The hMSSM approach [demystified]

[Maiani et al., 1305.2172; Djouadi et al., 1307.5205 and 1502.05653]

When diagonalizing a 2x2 matrix, we can trade one eigenvalue for one matrix element.
Namely, use the knowledge of Mj to get rid of either the (2,2) or the (1,1) element:

2 \2 2 \2 fe)

M%[ _ ./\/l2 i <M12) . MZ i (M12) %
= 11 = 22 =

M2, — M2 M3, — M2 :

tana = Mi, _ ML - M :
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The smart move is to remove the (2,2) element, subject to large top/stop corrections
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“Exact” relations for My and alpha (modulo external momentum effects!)

My M

M; = Mij, + ,
AT T My - M, = 0

The hMSSM approximation: neglect radiative corrections to the (1,1) and (1,2) elements

(M%Z)%ree hMSSM (M%Q)tree

tan «

(Mil)tree - M}% 7 B (M%l)tree T M}%

hMSSM
2

MH — (Mil)tree T

2 2
When is this a good approximation? AMiy < (Mig)tree

Easier to see for tan(alpha): A/\/lfl < (Mfl)tree _ Mﬁ

The dominant one-loop corrections from top-stop loops depend on u/Ms and X:/Ms

4 2X2 4 X X, A
o ;nt2 2 . 4t ’ AM%Q ~ = ;ntQ D) F Qt <6_ ‘ Qt) )
8T S5 Mg 8T S5 Mg Mg

AM7; ~

E.g., better approximation for p << Ms (which also suppresses A, effects in Higgs couplings)
When pu, X = Ms, expect a worse approximation for tan(alpha) at increasing tani3

Wait for Gabriel’s talk for a comparison with the proper EFT calculation
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particle. In the Minimal Supersymmetric Standard Model [75-81], the matrix describing the mixing of
the neutral CP-even Higgs bosons is:

2 .
2 2 cos“ 8 —cosfsinf
Ms =(m7 + 1) —cosBsinf sinz,B
. 2 .
ATLAS, 1509.00672, p15 sm2| SWP  —cosPsinf
Al-cosBsinf  cos“f
0 0
+[0 6/sin2ﬂ (18)

where ; and 6 are radiative corrections involvin&pn'marily top quarks and top squarks (stops), and other
radiative corrections not related to the top quark mass have been neglected. The couplings in the hMSSM

The dominant one-loop corrections from top-stop loops depend on u/Ms and X:/Ms

m} u?X? m X XA
AM?, ~ — L t AM?, ~ — L Ll — 2T
My 87‘(‘2’028% Mg M 8#2025% M3 M2 )’

E.g., better approximation for p << Ms (which also suppresses A, effects in Higgs couplings)
When pu, X = Ms, expect a worse approximation for tan(alpha) at increasing tani3

Wait for Gabriel’s talk for a comparison with the proper EFT calculation




ROQT files for “low-tb-high” and hMSSM

[Available on the twiki pages of the MSSM subgroup of the LHC-HXSWG]
Cross sections and branching ratios for h, Hand A for a grid of values of Ma and tanf3

Mhn, My and o with FeynHiggs
e The “low-tb-high” files: ggF and bb¢ Xsecs with SusHi (THDM + Ay)

Widths with FeynHiggs + PROPHECY4f + HDECAY
(LHC-HXSWG recommendation for MSSM BRs)

Mn =125 GeV, My and « from hMSSM formulae
e The hMSSM files: ggF and bb¢ Xsecs with susHi (THDM)
All widths with HDECAY

A direct comparison of Xsecs and BRs in the two sets of files is biased by the different My

We produced “validation” files with M from “low-tb-high”, Mn and « from hMSSM formulae

We then compared the “validation” files with the “low-tb-high” files



tan 3

Comparing FeynHiggs with hMSSM in the “low-tb-high” scenario
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Agreement at the level of 0.1% — 1% except at very low tanf3

[in this scenario p/Ms << 1, so corrections to (1,1) & (1,2) are suppressed and hMSSM approx. works well]



Discrepancies about (10-20)% in some widths from the different accuracy of the calculations
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Constraints on low (Ma, tan3) / heavy-SUSY scenarios

Our note did not discuss existing constraints on the parameter space of these scenarios

e Couplings of the 125-GeV scalar (must be SM-like within 10-20%)
e Direct searches for qbo — TT (constrain low Ma for large tanB)
e Directsearchesfor HT — Tv (constrain low Ma for all tanB)
e B-physics observables, (constrain low Ma for all tanB)

especialy B — X~

e Any others?
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Our note did not discuss existing constraints on the parameter space of these scenarios

. Obs- h couplings [k, «,, k] ] Obs., H=>2Z— 4l, Il qg/bb/vv

_______ Exp. -------- EXp.
] Obs., AH>w [ ] Obs., H- WW- Iv qg/lv l>|
-------- Exp. —
------- Exp. . >
| | Obs., H'—
] obs,A>zZh—>lvbb Ex: ™ @
------- Exp. a
@ WI [ [ [ I: [ [ [ | &\Q [ [ | [ [ [ [ [ [ [ [ |_ 8
c - : NN o
8 40 i \\\ 1 O
B : \\\ N\ | (o))
20 : \ N
10 ¢ —]
5 1:
4 s=8 TeV, 19.5-20.3 fb™' -
3 hMSSM, 95% CL limits |
2 ]
1 1 |
200 500




Constraints on low (Ma, tan3) / heavy-SUSY scenarios

Our note did not discuss existing constraints on the parameter space of these scenarios

e Couplings of the 125-GeV scalar (must be SM-like within 10-20%)
e Direct searches for qbo — TT (constrain low Ma for large tanB)
e Directsearchesfor HT — Tv (constrain low Ma for all tanB)
e B-physics observables, (constrain low Ma for all tanB)

especialy B — X~

e Any others?



Constraints on low (Ma, tan8) / heavy-SUSY scenarios

Our note did not discuss existing constraints on the parameter space of these scenarios

Ie] fitter |3
B(B — X y) -

68%, 95%, 99% excluded regions
(lighter to darker colours) —]

60 Sd3
| 1

M. [GeV]

300

200

100



Constraints on low (Ma, tan3) / heavy-SUSY scenarios

Our note did not discuss existing constraints on the parameter space of these scenarios

e Couplings of the 125-GeV scalar (must be SM-like within 10-20%)
e Direct searches for qbo — TT (constrain low Ma for large tanB)
e Directsearchesfor HT — Tv (constrain low Ma for all tanB)
e B-physics observables, (constrain low Ma for all tanB)

especialy B — X~

e Any others?



Final Recommendations:

1) Read the note

2) Use the files!!!



Thank you!!!



