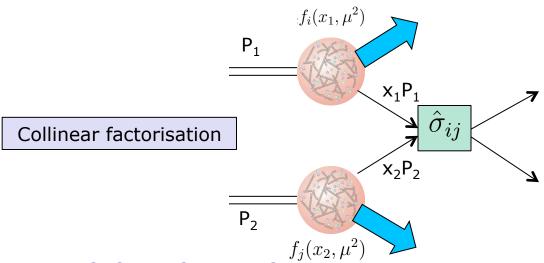
Forward Physics and Small-x QCD results from CMS Run II data

Hans Van Haevermaet (University of Antwerp)

Meeting of the Belgian Inter-University Attraction Pole network on fundamental interactions – 18/12/15


Outline

- Introduction
- Pseudorapidity distribution of charged hadrons in pp collisions at 13 TeV [Phys.Lett. B751 (2015) 143-163]
- The underlying event at 13 TeV [CMS-PAS-FSQ-15-007]
- Measurement of long-range near-side two-particle correlations in pp collisions at 13 TeV [arXiv:1510.03068]
- Summary

Description of proton-proton collisions

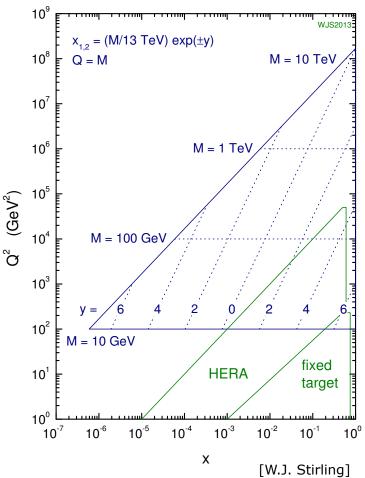
Factorise the cross section as: $\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_S(\mu^2), Q^2/\mu^2)$

Hard scattering cross section:

process dependent, short distance (high energy) interaction with small coupling, calculated with fixed order perturbation theory

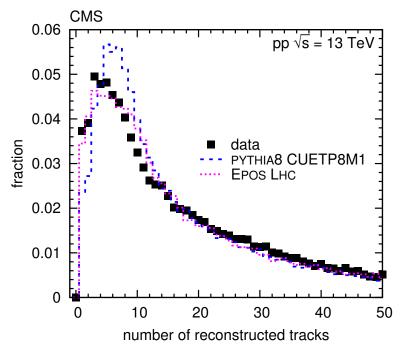
Process independent PDF's:

non-perturbative long distance interactions with high coupling


Evolution of PDF's driven by DGLAP equations: $f(x,Q^2)$ determined by $f(x_0>x, Q_0^2<Q^2)$

- Successful in describing many inclusive processes
- → Valid for one hard momentum scale and not too low x (dilute hadron) However:
 - → Treatment of initial transverse momenta of the partons neglected
- Complemented with phenomenological models that add initial and final state radiation, and allow for multiple parton interactions

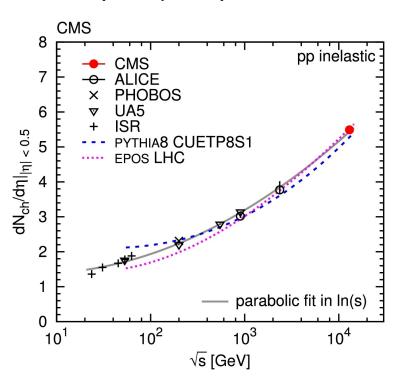
QCD at the LHC


- What will happen at 13 TeV?
 Do the collinear approximations stay valid?
- Gluons dominate low-x region: saturation or recombination effects?
- Monte Carlo models tuned with data up until centre-of-mass energies of 7 TeV
 - → performance at 13 TeV?
- Need to measure fundamental properties of proton-proton collisions at 13 TeV

13 TeV LHC parton kinematics

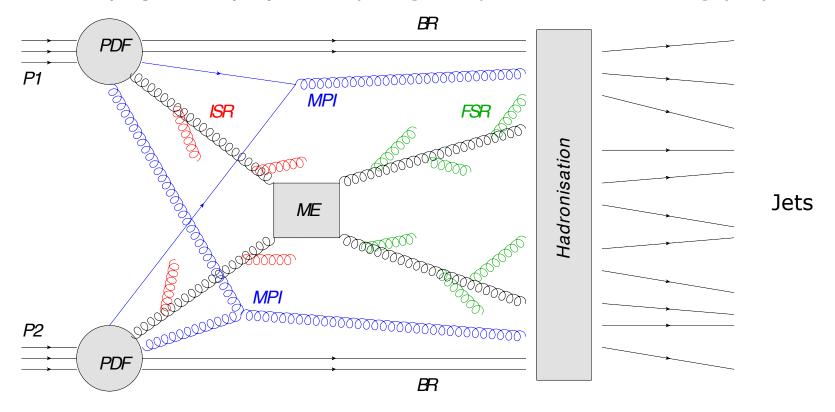
Pseudorapidity distribution of charged hadrons


- First measurement with proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$
- Inclusive production of charged hadrons driven by combination of perturbative and non-perturbative QCD phenomena (saturation of parton densities, MPI, hadronisation, soft diffractive scattering)
- Measurement necessary to tune the modeling of these contributions
- Important to control pile-up backgrounds

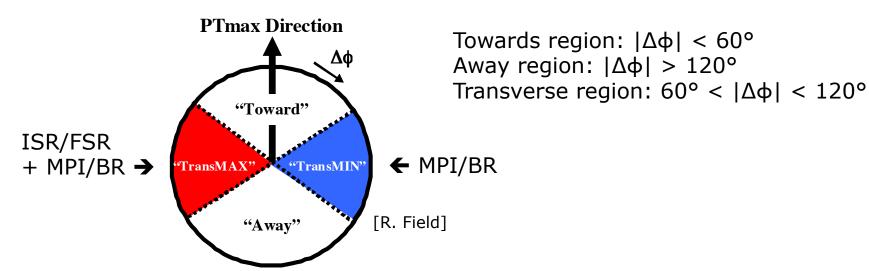


- Study yield of charged hadrons
 in |n| < 2 for inelastic events
- No minimum transverse momentum requirement (→ B = 0 T data)
- Corrected to primary long-lived charged hadrons (no leptons)

Pseudorapidity distribution of charged hadrons


- First measurement with proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$
- Study yield of charged hadrons in $|\eta| < 2$ for inelastic events
- No minimum transverse momentum requirement (\rightarrow B = 0 T data)
- Corrected to primary long-lived charged hadrons (no leptons)

• For $|\eta| < 0.5$: $dN_{ch}/d\eta = 5.49 \pm 0.01$ (stat) ± 0.17 (syst)


The underlying event (UE) is everything except the hard scattering (ME)

- Understanding the UE is crucial for precision measurements of the SM and for the search for new physics, but its dynamics are not well understood
 - → soft & semi-hard interactions can not be fully described with perturbative QCD
 - → phenomenological models involve parameters that **must be tuned to data**

• Study the UE activity in proton-proton collisions as a function of the hard scale of the event, and at different centre-of-mass energies (\sqrt{s})

Direction of the leading object: e.g. leading charged particle/jet

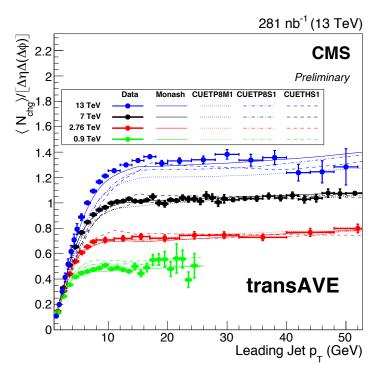
Observables: $\langle N_{ch} \rangle / [\Delta \eta \Delta(\Delta \phi)], \langle \Sigma p_T \rangle / [\Delta \eta \Delta(\Delta \phi)]$

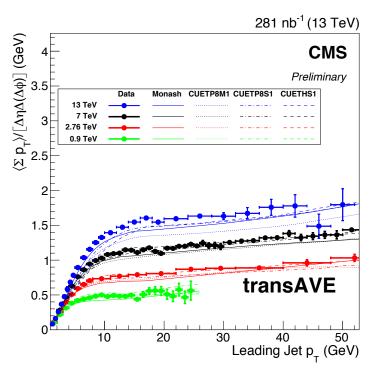
TransMAX (TransMIN): side of transverse region with highest (lowest) activity

TransAVE: (TransMAX + TransMIN) / 2

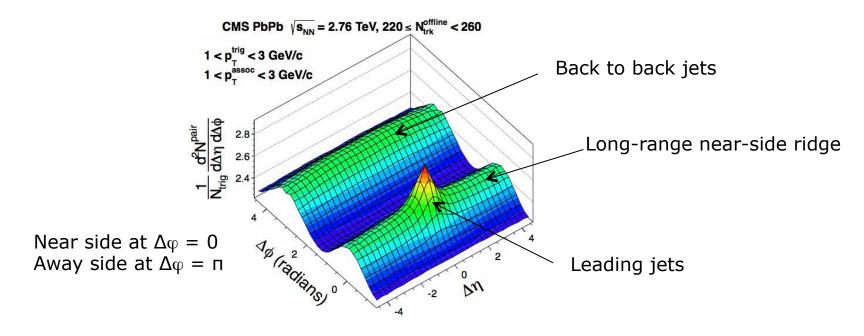
TransDIF: TransMAX – TransMIN → only sensitive to ISR/FSR

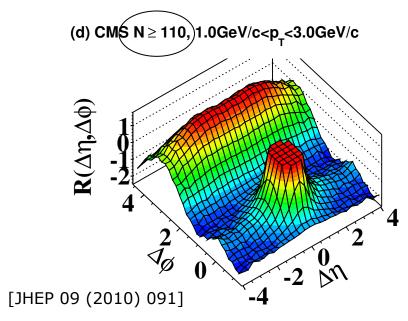
- <N_{ch}> as function of leading charged particle p_T $(p_T > 1 \text{ GeV and } |\eta| < 2)$
- Sum particles in transverse region with $p_T > 0.5$ GeV and $|\eta| < 2$
- Data: B = 3.8T; pile-up ~1.3; ZeroBias trigger; exactly 1 good primary vertex


- Good description of existing tuned models
- Pythia8 Monash and CMS tune CUETP8M1 perform best

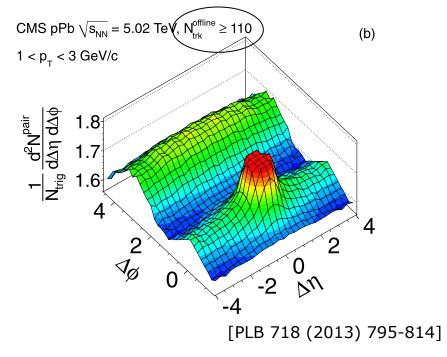

- <N_{ch}> as function of leading charged-particle jet p_T $(p_T > 1 \text{ GeV and } |\eta| < 2; \text{ SisCone R} = 0.5)$
- Sum particles in transverse region with $p_T > 0.5$ GeV and $|\eta| < 2$
- Data: B = 3.8T; pile-up ~1.3; ZeroBias trigger; exactly 1 good primary vertex

- Good description of existing tuned models
- Pythia8 Monash and CMS tune CUETP8M1 perform best

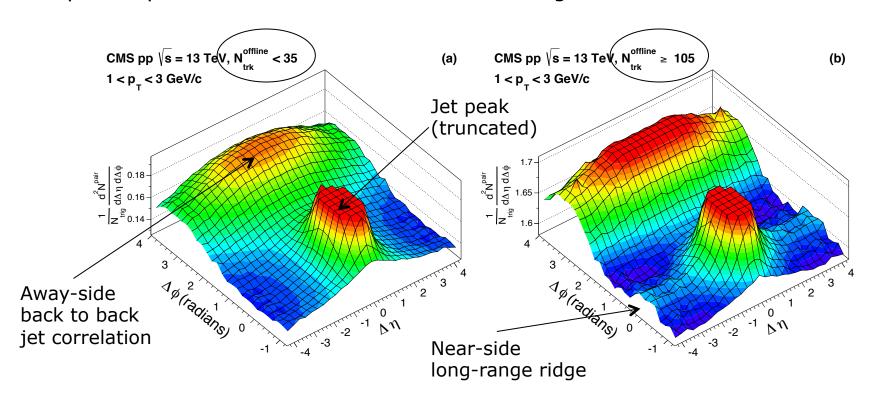

- <N_{ch}> as function of leading charged-particle jet p_T $(p_T > 1 \text{ GeV and } |\eta| < 2; \text{ SisCone R} = 0.5)$
- Sum particles in transverse region with $p_T > 0.5$ GeV and $|\eta| < 2$
- Data: B = 3.8T; pile-up ~1.3; ZeroBias trigger; exactly 1 good primary vertex


Pythia8 Monash tune predicts better centre-of-mass energy dependence

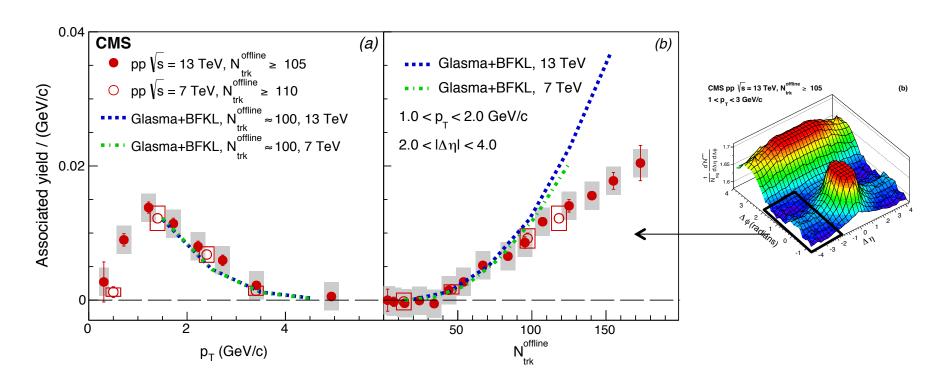
- Well known in heavy ion collisions: used to probe hydrodynamics
- Two particle correlations produce double ridge structure in $(\Delta \eta, \Delta \phi)$ plane


- Long-range near-side ridge structure:
 - → reflects hydrodynamic properties of the medium

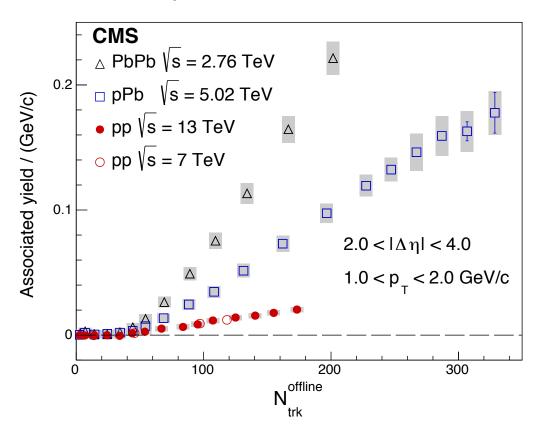
• First observation by CMS of near-side long-range correlations in high multiplicity proton-proton collisions at $\sqrt{s} = 7$ TeV during LHC Run I


Unexpected in pp collisionsorigin remains unknown!

Later also seen in proton-lead collisions:


P-Pb origin similar to Pb-Pb: hydrodynamics can describe data

- Does the ridge magnitude depend on \sqrt{s} ?
- Observation of long-range near-side correlations in high multiplicity proton-proton collisions at $\sqrt{s} = 13$ TeV during LHC Run II


• Data collected at B = 3.8 T; L = 270 nb^{-1} ; pile-up ~ 1.3

Calculation of associated yield as function of p_T and N_{trk}:

- Low multiplicity: no ridge-like correlations
- High multiplicity: ridge-like correlations with linear increase yield reaches maximum in $p_T = 1 2$ GeV/c range

Comparison of different systems:

- Ridge yield starts to increase linearly from $N_{trk} \sim 40$ in all 3 systems
- Strong system size dependence

Summary

- The CMS forward physics and small-x QCD program had a good start in LHC Run II, with low pile-up data available at B = 0T and 3.8T
- 3 measurements public, many more to come in the next months (inelastic cross section, $dE/d\eta$, dN/dp_T spectra, Bose-Einstein correlations,...)
- Pseudorapidity distribution of charged hadrons at $\sqrt{s} = 13$ TeV:
 - → first crucial test of our available phenomenological models
 - → LHC tuned Monte Carlo generators can describe data well
- Underlying event measurements at $\sqrt{s} = 13$ TeV:
 - → important to understand contributions of MPI, ISR/FSR, BR
 - → fundamental to constrain and tune existing models
 - → LHC tuned Monte Carlo generators perform well
- Measurement of two particle correlations in pp collisions at $\sqrt{s} = 13$ TeV:
 - → observation of long-range near-side ridge structure in high multiplicity events
 - → no centre-of-mass energy dependence observed
 - → origin remains unknown

