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Dark Matter

http://scienceblogs.com/startswithabang/2012/07/26/empty-space-has-more-energy-than-everything-in-the-universe-combined/
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Figure 1: The four diagrams leading to genuine 1-loop neutrino mass models. The notation
of [38] is used to classify these diagrams. Just to mention two examples: Diagram T1-ii corre-
sponds to the the classical Zee model [21], while an example for T-3 is the “scotogenic” model
of [39].

classify them as class-I diagrams (or models). (iv) For all remaining diagrams one can then
distinguish diagrams which lead to finite loop integrals from those with inifinite integrals. The
former cases, which are our “class-II” diagrams, can present interesting models of neutrino
mass, even though they are not genuinely 2-loop. The characterization of class-II diagrams
(and their corresponding models) is similar to the discussion given in [38] for the 1-loop order:
Class-II diagrams can give a theoretical motivation for the smallness of a particular vertex,
generated at 1-loop order. This particular vertex then appears in one of the four genuine 1-
loop neutrino mass diagrams (see fig. 1), making the whole construction e↵ectively 2-loop.
Diagrams with infinite loop integrals, on the other hand, can never lead to interesting models
and can therefore be discarded.

Surprisingly, the result of the above exercise allows one to show that in the moderate number
of diagrams of class-I all cases are variations of only three basic diagrams, two of which have
been known in the literature for a long time: The Cheng-Li-Babu-Zee [16,26,27] diagram (CLBZ
in the following) and another similar diagram first considered in two independent papers by
Petcov and Toshev [41] and by Babu and Ma [42] (PTBM in the following). The third basic
diagram we call the “rainbow” diagram (RB in the following). Similarly, it can be shown that
all diagrams in class-II can be described by variations of just five basic types of diagrams:
we call them the non-genuine CLBZ and PTBM and RB diagrams plus two internal scalar
correction diagrams (two categories, called ISC-i and ISC-ii).

Before entering into the details, let us mention that our study considers only scalar bosons,
while, for example, the original papers on the PTBM diagram [41,42] use the SM W -boson. We
decided to concentrate on scalars for essentially two reasons: (a) From a topological point of
view, diagrams with scalar or vector bosons are equivalent. Thus, from our list of diagrams for
scalars the corresponding diagrams for vectors can be easily derived.3 And (b) apart from the
few cases with SM W -bosons, new vector-mediated cases require that the vector should be a

3Of course, the propagator of a massive vector boson is di↵erent from that of a scalar. Thus, the expressions
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Minimal Dark Matter

❖ Minimal DM rely on the fact that neutral 
particles belonging to higher-order SU(2) 
representations, are automatically stable, 
without the need to add any new symmetry. 
While still matching DM cosmological 
constraints.

M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J.
Phys. 11, 105005 (2009) [arXiv:0903.3381 [hep-ph]].
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A.2. Tensor Products

A.2.1. SU(N)

Table A.35: SU(2) Tensor Products

2 ⇥ 2 = 1 + 3
3 ⇥ 2 = 2 + 4
3 ⇥ 3 = 1 + 3 + 5
4 ⇥ 2 = 3 + 5
4 ⇥ 3 = 2 + 4 + 6
4 ⇥ 4 = 1 + 3 + 5 + 7
5 ⇥ 2 = 4 + 6
5 ⇥ 3 = 3 + 5 + 7
5 ⇥ 4 = 2 + 4 + 6 + 8
5 ⇥ 5 = 1 + 3 + 5 + 7 + 9
6 ⇥ 2 = 5 + 7
6 ⇥ 3 = 4 + 6 + 8
6 ⇥ 4 = 3 + 5 + 7 + 9
6 ⇥ 5 = 2 + 4 + 6 + 8 + 10
6 ⇥ 6 = 1 + 3 + 5 + 7 + 9 + 11
7 ⇥ 2 = 6 + 8
7 ⇥ 3 = 5 + 7 + 9
7 ⇥ 4 = 4 + 6 + 8 + 10
7 ⇥ 5 = 3 + 5 + 7 + 9 + 11
7 ⇥ 6 = 2 + 4 + 6 + 8 + 10 + 12
7 ⇥ 7 = 1 + 3 + 5 + 7 + 9 + 11 + 13
8 ⇥ 2 = 7 + 9
8 ⇥ 3 = 6 + 8 + 10
8 ⇥ 4 = 5 + 7 + 9 + 11
8 ⇥ 5 = 4 + 6 + 8 + 10 + 12
8 ⇥ 6 = 3 + 5 + 7 + 9 + 11 + 13
8 ⇥ 7 = 2 + 4 + 6 + 8 + 10 + 12 + 14
8 ⇥ 8 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15
9 ⇥ 2 = 8 + 10
9 ⇥ 3 = 7 + 9 + 11
9 ⇥ 4 = 6 + 8 + 10 + 12
9 ⇥ 5 = 5 + 7 + 9 + 11 + 13
9 ⇥ 6 = 4 + 6 + 8 + 10 + 12 + 14
9 ⇥ 7 = 3 + 5 + 7 + 9 + 11 + 13 + 15
9 ⇥ 8 = 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16
9 ⇥ 9 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17

10 ⇥ 2 = 9 + 11
10 ⇥ 3 = 8 + 10 + 12
10 ⇥ 4 = 7 + 9 + 11 + 13
10 ⇥ 5 = 6 + 8 + 10 + 12 + 14
10 ⇥ 6 = 5 + 7 + 9 + 11 + 13 + 15
10 ⇥ 7 = 4 + 6 + 8 + 10 + 12 + 14 + 16
10 ⇥ 8 = 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17
10 ⇥ 9 = 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18

10 ⇥ 10 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
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SU(2)~4: 4 X 2=3, 3 X 2=2, 2 x 2=1
4 X 2 X 2 X 2=1 

S H H H* ——> Dim 4
F L H H* ——> Dim 5  
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DM Candidates?
Quantum numbers DM can DD Stable?

SU(2)L U(1)Y Spin decay into bound?

2 1/2 S EL ⇥ ⇥
2 1/2 F EH ⇥ ⇥
3 0 S HH⇤ p ⇥
3 0 F LH

p ⇥
3 1 S HH, LL ⇥ ⇥
3 1 F LH ⇥ ⇥
4 1/2 S HHH⇤ ⇥ ⇥
4 1/2 F (LHH⇤) ⇥ ⇥
4 3/2 S HHH ⇥ ⇥
4 3/2 F (LHH) ⇥ ⇥
5 0 S (HHH⇤H⇤)

p ⇥
5 0 F � p p
5 1 S (HH⇤H⇤H⇤) ⇥ ⇥
5 1 F � ⇥ p
5 2 S (H⇤H⇤H⇤H⇤) ⇥ ⇥
5 2 F � ⇥ p
6 1/2, 3/2, 5/2 S � ⇥ p
7 0 S � p p
8 1/2, 3/2 . . . S � ⇥ p

Table 1: Book-keeping of the possible Minimal DM candidates and selection of
successful ones. Quantum numbers are listed in the first 3 columns. The 4th column indi-
cates some decay modes into SM particles; modes listed in parenthesis correspond to dimension
5 operators. Candidates with Y 6= 0 are excluded by Direct Detection (DD) searches (un-
less appropriate non-minimalities are introduced, see App.B), as indicated in the 5th column.
Candidates with an open decay channel are excluded (unless some other non-minimalities are
introduced, see App.B), as indicated in the 6th column. Note that, for simplicity, the possibilities
concerning the SUL(2) 6- and 8-plet are only sketched. Analogously, for the 7-plet we list the
only interesting candidate. At the end of the game, the fully successful candidates are indicated
by the shaded background: the fermionic 5-plet with Y = 0 and the scalar 7-plet with Y = 0. As
for the latter non-minimal scalar quartic couplings are generically present (see Appendix B),
the former is overall preferred and we will refer to it as the MDM candidate in the paper.

the bounds are strong on this possibility [7]). Its conjugate X̄ belongs to the same representa-
tion, so that the theory is vector-like with respect to SUL(2) and anomaly-free. The Lagrangian
is ‘minimal’:

L = LSM +
1

2

⇢ X̄ (iD/ + M)X for fermionic X
|DµX|2 �M2|X |2 for scalar X (1)

The gauge-covariant derivative Dµ contains the known electroweak gauge couplings to the
vectors bosons of the SM (Z, W± and �) and M is a tree level mass term (the only free
parameter of the theory). A host of additional term (such as Yukawa couplings with SM fields)
would in principle be present, but for successful candidates they will be forbidden by gauge
and Lorentz invariance, as detailed below.

X is fully determined by the assignments of its quantum numbers under the gauge group:
the number of its SU(2)L components, n = {2, 3, 4, 5, . . .} and the hypercharge Y . In Table 1
we list all the potentially successful combinations, as we now proceed to discuss.

3

M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J.
Phys. 11, 105005 (2009) [arXiv:0903.3381 [hep-ph]].
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3

M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J.
Phys. 11, 105005 (2009) [arXiv:0903.3381 [hep-ph]].



MDM Direct Detection

For a given assignment of n (first column of the table) there are a few choices of the hyper-
charge Y such that one component of the X multiplet has electric charge Q = T3+Y = 0 (where
T3 is the usual ‘diagonal’ generator of SU(2)L), as needed for a DM candidate. For instance,
for the doublet n = 2, since T3 = ±1/2, the only possibility is Y = ⌥1/2. For n = 5 one can
have Y = {0,±1,±2}, and so on. We do not consider the case of the n = 1 singlet: lacking
gauge interactions, even if it is ever produced in the Early Universe it could not annihilate and
remain with the correct relic amount by means of the standard freeze-out mechanism.1

The list of possible candidates has to stop at n  5 (8) for fermions (scalars) because larger
multiplets would accelerate the running of the SU(2)L coupling g2: demanding that the per-
turbativity of ↵�1

2 (E 0) = ↵�1
2 (M) � (b2/2⇡) ln E 0/M is mantained all the way up to E 0 ⇠ MPl

(since the Planck scale MPl is the cuto↵ scale of the theory) imposes the bound. In this formula
b2 = �19/6+ c gX (n2�1)/36 with c = 1 for fermions, c = 1/4 for scalars and gX is the number
of degrees of freedom in the multiplet.

In this list of candidates, those with Y 6= 0 have vector-like interactions with the Z boson
that produce a tree-level spin-independent elastic cross sections

�(DMN ! DMN ) = c
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2⇡
Y 2(N � (1� 4s2

W)Z)2 (2)

where c = 1 for fermionic DM and c = 4 for scalar DM [8]; Z and N are the number of protons
and of neutrons in the target nucleus with mass MN (we are assuming M �MN ). This elastic
cross section is 2÷3 orders of magnitude above the present bounds [9, 10] from direct detection
searches. Unless minimality is abandoned in an appropriate way (that we discuss in Appendix
B), such MDM candidates are therefore excluded and we will focus in the following on those
with Y = 0.

Next we need to inspect which of the remaining candidates are stable against decay into
SM particles. The fourth column of Table 1 shows some possible decay operators for each case.
For instance, the fermionic 3-plet with hypercharge Y = 0 would couple through a Yukawa
operator XLH with a SM lepton doublet L and a Higgs field H and decay in a very short time.
This is not a viable DM candidate, unless the operator is eliminated by some ad hoc symmetry
(see again Appendix B). For another instance, the scalar 5-plet with Y = 0 would couple to
four Higgs fields with a dimension 5 operator XHHH⇤H⇤/MPl, suppressed by one power of the
Planck scale. Despite the suppression, the resulting typical life-time ⌧ ⇠ M2

Pl TeV�3 is shorter
than the age of the universe, so that this is not a viable DM candidate.
Now, the crucial observation is that, given the known SM particle content, the large n multiplets
cannot couple to SM fields and are therefore automatically stable DM candidates. This is the
same reason why known massive stable particles (like the proton) are stable: decay modes
consistent with renormalizability and gauge symmetry do not exist. In other words, for these
candidates DM stability is explained by an ‘accidental symmetry’, like proton stability. Among
the candidates that survived all the previous constraints, only two possibilities then emerge: a
n = 5 fermion, or a n = 7 scalar. But scalar states may have non-minimal quartic couplings
with the Higgs field (see Appendix B). We will then set the 7-plet aside and focus on the
fermionic 5-plet for minimality in the following.

In summary, the ‘Minimal Dark Matter’ construction singles out a

fermionic SU(2)L 5-plet with hypercharge Y = 0

1We discuss the case of a scalar singlet with non-minimal additional interactions in Appendix B.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
quantitatively the resulting cross section. Non-relativistic MDM/quark interactions of fermionic
X with mass M � MW � mq are described by the e↵ective on-shell Lagrangian
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as
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where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
with mass MN is given by
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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For a given assignment of n (first column of the table) there are a few choices of the hyper-
charge Y such that one component of the X multiplet has electric charge Q = T3+Y = 0 (where
T3 is the usual ‘diagonal’ generator of SU(2)L), as needed for a DM candidate. For instance,
for the doublet n = 2, since T3 = ±1/2, the only possibility is Y = ⌥1/2. For n = 5 one can
have Y = {0,±1,±2}, and so on. We do not consider the case of the n = 1 singlet: lacking
gauge interactions, even if it is ever produced in the Early Universe it could not annihilate and
remain with the correct relic amount by means of the standard freeze-out mechanism.1

The list of possible candidates has to stop at n  5 (8) for fermions (scalars) because larger
multiplets would accelerate the running of the SU(2)L coupling g2: demanding that the per-
turbativity of ↵�1

2 (E 0) = ↵�1
2 (M) � (b2/2⇡) ln E 0/M is mantained all the way up to E 0 ⇠ MPl

(since the Planck scale MPl is the cuto↵ scale of the theory) imposes the bound. In this formula
b2 = �19/6+ c gX (n2�1)/36 with c = 1 for fermions, c = 1/4 for scalars and gX is the number
of degrees of freedom in the multiplet.

In this list of candidates, those with Y 6= 0 have vector-like interactions with the Z boson
that produce a tree-level spin-independent elastic cross sections

�(DMN ! DMN ) = c
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W)Z)2 (2)

where c = 1 for fermionic DM and c = 4 for scalar DM [8]; Z and N are the number of protons
and of neutrons in the target nucleus with mass MN (we are assuming M �MN ). This elastic
cross section is 2÷3 orders of magnitude above the present bounds [9, 10] from direct detection
searches. Unless minimality is abandoned in an appropriate way (that we discuss in Appendix
B), such MDM candidates are therefore excluded and we will focus in the following on those
with Y = 0.

Next we need to inspect which of the remaining candidates are stable against decay into
SM particles. The fourth column of Table 1 shows some possible decay operators for each case.
For instance, the fermionic 3-plet with hypercharge Y = 0 would couple through a Yukawa
operator XLH with a SM lepton doublet L and a Higgs field H and decay in a very short time.
This is not a viable DM candidate, unless the operator is eliminated by some ad hoc symmetry
(see again Appendix B). For another instance, the scalar 5-plet with Y = 0 would couple to
four Higgs fields with a dimension 5 operator XHHH⇤H⇤/MPl, suppressed by one power of the
Planck scale. Despite the suppression, the resulting typical life-time ⌧ ⇠ M2

Pl TeV�3 is shorter
than the age of the universe, so that this is not a viable DM candidate.
Now, the crucial observation is that, given the known SM particle content, the large n multiplets
cannot couple to SM fields and are therefore automatically stable DM candidates. This is the
same reason why known massive stable particles (like the proton) are stable: decay modes
consistent with renormalizability and gauge symmetry do not exist. In other words, for these
candidates DM stability is explained by an ‘accidental symmetry’, like proton stability. Among
the candidates that survived all the previous constraints, only two possibilities then emerge: a
n = 5 fermion, or a n = 7 scalar. But scalar states may have non-minimal quartic couplings
with the Higgs field (see Appendix B). We will then set the 7-plet aside and focus on the
fermionic 5-plet for minimality in the following.

In summary, the ‘Minimal Dark Matter’ construction singles out a

fermionic SU(2)L 5-plet with hypercharge Y = 0

1We discuss the case of a scalar singlet with non-minimal additional interactions in Appendix B.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
quantitatively the resulting cross section. Non-relativistic MDM/quark interactions of fermionic
X with mass M � MW � mq are described by the e↵ective on-shell Lagrangian
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as
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mq q̄q|Ni ⌘ fmN (16)

where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
with mass MN is given by
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
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definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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For a given assignment of n (first column of the table) there are a few choices of the hyper-
charge Y such that one component of the X multiplet has electric charge Q = T3+Y = 0 (where
T3 is the usual ‘diagonal’ generator of SU(2)L), as needed for a DM candidate. For instance,
for the doublet n = 2, since T3 = ±1/2, the only possibility is Y = ⌥1/2. For n = 5 one can
have Y = {0,±1,±2}, and so on. We do not consider the case of the n = 1 singlet: lacking
gauge interactions, even if it is ever produced in the Early Universe it could not annihilate and
remain with the correct relic amount by means of the standard freeze-out mechanism.1
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(since the Planck scale MPl is the cuto↵ scale of the theory) imposes the bound. In this formula
b2 = �19/6+ c gX (n2�1)/36 with c = 1 for fermions, c = 1/4 for scalars and gX is the number
of degrees of freedom in the multiplet.

In this list of candidates, those with Y 6= 0 have vector-like interactions with the Z boson
that produce a tree-level spin-independent elastic cross sections
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FM2
N

2⇡
Y 2(N � (1� 4s2

W)Z)2 (2)

where c = 1 for fermionic DM and c = 4 for scalar DM [8]; Z and N are the number of protons
and of neutrons in the target nucleus with mass MN (we are assuming M �MN ). This elastic
cross section is 2÷3 orders of magnitude above the present bounds [9, 10] from direct detection
searches. Unless minimality is abandoned in an appropriate way (that we discuss in Appendix
B), such MDM candidates are therefore excluded and we will focus in the following on those
with Y = 0.

Next we need to inspect which of the remaining candidates are stable against decay into
SM particles. The fourth column of Table 1 shows some possible decay operators for each case.
For instance, the fermionic 3-plet with hypercharge Y = 0 would couple through a Yukawa
operator XLH with a SM lepton doublet L and a Higgs field H and decay in a very short time.
This is not a viable DM candidate, unless the operator is eliminated by some ad hoc symmetry
(see again Appendix B). For another instance, the scalar 5-plet with Y = 0 would couple to
four Higgs fields with a dimension 5 operator XHHH⇤H⇤/MPl, suppressed by one power of the
Planck scale. Despite the suppression, the resulting typical life-time ⌧ ⇠ M2

Pl TeV�3 is shorter
than the age of the universe, so that this is not a viable DM candidate.
Now, the crucial observation is that, given the known SM particle content, the large n multiplets
cannot couple to SM fields and are therefore automatically stable DM candidates. This is the
same reason why known massive stable particles (like the proton) are stable: decay modes
consistent with renormalizability and gauge symmetry do not exist. In other words, for these
candidates DM stability is explained by an ‘accidental symmetry’, like proton stability. Among
the candidates that survived all the previous constraints, only two possibilities then emerge: a
n = 5 fermion, or a n = 7 scalar. But scalar states may have non-minimal quartic couplings
with the Higgs field (see Appendix B). We will then set the 7-plet aside and focus on the
fermionic 5-plet for minimality in the following.

In summary, the ‘Minimal Dark Matter’ construction singles out a

fermionic SU(2)L 5-plet with hypercharge Y = 0

1We discuss the case of a scalar singlet with non-minimal additional interactions in Appendix B.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
quantitatively the resulting cross section. Non-relativistic MDM/quark interactions of fermionic
X with mass M � MW � mq are described by the e↵ective on-shell Lagrangian
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as

hN |
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mq q̄q|Ni ⌘ fmN (16)

where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
with mass MN is given by
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.

9

W

q q

DM DM

h

DM

W W

q
q q

DM DM
DM

±

W

W

q
q q

DM DM
DM

±

Figure 2: One loop DM/quark scattering for fermionic MDM with Y = 0 (two extra graphs
involving the four particle vertex exist in the case of scalar MDM).

As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
quantitatively the resulting cross section. Non-relativistic MDM/quark interactions of fermionic
X with mass M � MW � mq are described by the e↵ective on-shell Lagrangian
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as

hN |
X

q

mq q̄q|Ni ⌘ fmN (16)

where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
with mass MN is given by
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
quantitatively the resulting cross section. Non-relativistic MDM/quark interactions of fermionic
X with mass M � MW � mq are described by the e↵ective on-shell Lagrangian
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as

hN |
X

q

mq q̄q|Ni ⌘ fmN (16)

where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
with mass MN is given by
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
quantitatively the resulting cross section. Non-relativistic MDM/quark interactions of fermionic
X with mass M � MW � mq are described by the e↵ective on-shell Lagrangian

L W
e↵ = (n2� (1±2Y )2)

⇡↵2
2

16MW

X

q

✓
1

M2
W

+
1

m2
h

◆
[X̄X ]mq[q̄q]� 2

3M
[X̄�µ�5X ][q̄�µ�5q]

�
(15)

where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as
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where mN is the nucleon mass, the spin-independent DM cross section on a target nucleus N
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.

9

W

q q

DM DM

h

DM

W W

q
q q

DM DM
DM

±

W

W

q
q q

DM DM
DM

±

Figure 2: One loop DM/quark scattering for fermionic MDM with Y = 0 (two extra graphs
involving the four particle vertex exist in the case of scalar MDM).

As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.

2More precisely, one needs to consider the e↵ective Lagrangian for o↵-shell quarks, finding various operators
that become equivalent only on-shell. Their nucleon matrix elements can di↵er; we ignore this issue because
presently it is within the QCD errors.
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As discussed in Sec.2, MDM candidates with Y = 0 have vanishing DMN direct detection
cross sections at tree level (see eq. (17)). The scattering on nuclei N proceeds therefore at one-
loop, via the diagrams in fig. 2 that involve one of the charged components X± of the multiplets.
An explicit computation of these one-loop diagrams is needed to understand qualitatively and
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where the + (�) sign holds for down-type (up-type) quarks q = {u, d, s, c, b, t}, mh is the Higgs
mass and mq are the quark masses. The first operator gives dominant spin-independent e↵ects
and is not suppressed by M ; the second operator is suppressed by one power of M and gives
spin-dependent e↵ects. Parameterizing the nucleonic matrix element as

hN |
X

q

mq q̄q|Ni ⌘ fmN (16)
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The case of scalar X is not much di↵erent: the M -independent contribution to �SI is equal to
the fermionic result of eq. (17) but there is no spin-dependent e↵ect.

Assuming mh = 115 GeV and f ⇡ 1/3 (QCD uncertainties induce a one order of magnitude
indetermination on �SI

2) we find therefore for the fermionic MDM 5-plet

�SI = 1.2 · 10�44 cm2. (18)

As usual [1, 14, 15], �SI is defined to be the cross section per nucleon. The prediction is a
definite number (as opposed to the large areas in the plane M/� that is covered by typical
supersymmetric constuctions by varying the model parameters) and Fig. 3 shows that this
value is within or very close to the sensitivities of experiments currently under study, such
as Super-CDMS and Xenon 1-ton [16]. The annual modulation e↵ect of the DAMA/Libra
experiment [13] cannot be explained by MDM candidates, since they have too large masses and
too small cross sections with respect to the properties of a WIMP compatible with the e↵ect.
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Figure 1: The four diagrams leading to genuine 1-loop neutrino mass models. The notation
of [38] is used to classify these diagrams. Just to mention two examples: Diagram T1-ii corre-
sponds to the the classical Zee model [21], while an example for T-3 is the “scotogenic” model
of [39].

classify them as class-I diagrams (or models). (iv) For all remaining diagrams one can then
distinguish diagrams which lead to finite loop integrals from those with inifinite integrals. The
former cases, which are our “class-II” diagrams, can present interesting models of neutrino
mass, even though they are not genuinely 2-loop. The characterization of class-II diagrams
(and their corresponding models) is similar to the discussion given in [38] for the 1-loop order:
Class-II diagrams can give a theoretical motivation for the smallness of a particular vertex,
generated at 1-loop order. This particular vertex then appears in one of the four genuine 1-
loop neutrino mass diagrams (see fig. 1), making the whole construction e↵ectively 2-loop.
Diagrams with infinite loop integrals, on the other hand, can never lead to interesting models
and can therefore be discarded.

Surprisingly, the result of the above exercise allows one to show that in the moderate number
of diagrams of class-I all cases are variations of only three basic diagrams, two of which have
been known in the literature for a long time: The Cheng-Li-Babu-Zee [16,26,27] diagram (CLBZ
in the following) and another similar diagram first considered in two independent papers by
Petcov and Toshev [41] and by Babu and Ma [42] (PTBM in the following). The third basic
diagram we call the “rainbow” diagram (RB in the following). Similarly, it can be shown that
all diagrams in class-II can be described by variations of just five basic types of diagrams:
we call them the non-genuine CLBZ and PTBM and RB diagrams plus two internal scalar
correction diagrams (two categories, called ISC-i and ISC-ii).

Before entering into the details, let us mention that our study considers only scalar bosons,
while, for example, the original papers on the PTBM diagram [41,42] use the SM W -boson. We
decided to concentrate on scalars for essentially two reasons: (a) From a topological point of
view, diagrams with scalar or vector bosons are equivalent. Thus, from our list of diagrams for
scalars the corresponding diagrams for vectors can be easily derived.3 And (b) apart from the
few cases with SM W -bosons, new vector-mediated cases require that the vector should be a

3Of course, the propagator of a massive vector boson is di↵erent from that of a scalar. Thus, the expressions
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Careful: Quartic coupling running 
goes faster than  "EW. 

( Hamada, Kawana,Tsumara. hep-ph 1505.01772)
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Example 2 
(7,0)(6,1)(5,2)

Only models with an 
SU(2)~3 or a ~4 can 

decay into all SM 
particles.
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