slic

A Geant4-based detector simulation package

Norman Graf, Jeremy McCormick SLAC October 15, 2009

Mission Statement

- Provide full detector response simulation capabilities for Linear Collider physics program.
- Need flexibility for new detector geometries and readout technologies.
- The system should be flexible, powerful, yet simple to install and maintain.
- Limited resources demand efficient solutions, focused effort.

Full Detector Response Simulation

- Use Geant4 toolkit to describe interaction of particles with matter.
- Thin layer of non-G4 C++ provides access to:
 - Event Generator input
 - Detector Geometry description input
 - Detector Hits output
- Geometries fully described at run-time!
 - In principle, as fully detailed as desired.
 - Uses lcdd, an extension of GDML.
- Solution is applicable beyond LC problem domain,

Geometry Definition

- Goal was to free the end user from having to write C++ code to define the detector.
- All of the detector properties should be definable at runtime with an easy to use format.
- Selected xml, and extended the existing GDML format for pure geometry description.

Why XML?

- Simplicity: Rigid set of rules
- Extensibility: easily add custom features, data types
- Interoperability: OS, languages, applications
- Self-describing data, validate against schema
- Hierarchical structure \leftrightarrow OOP, detector/subdetector
- Open W3 standard, lingua franca for B2B
- Many tools for validating, parsing, translating
- Automatic code-generation for data-binding
- Plain text: easily edited, cvs versioning

LCDD and GDML

•Adopted GDML as base geometry definition, then extended it to incorporate missing detector elements.

LCDD

- detector info
- identifiers
- sensitive detectors
- regions
- physics limits & cuts
- visualization
- magnetic fields

GDML

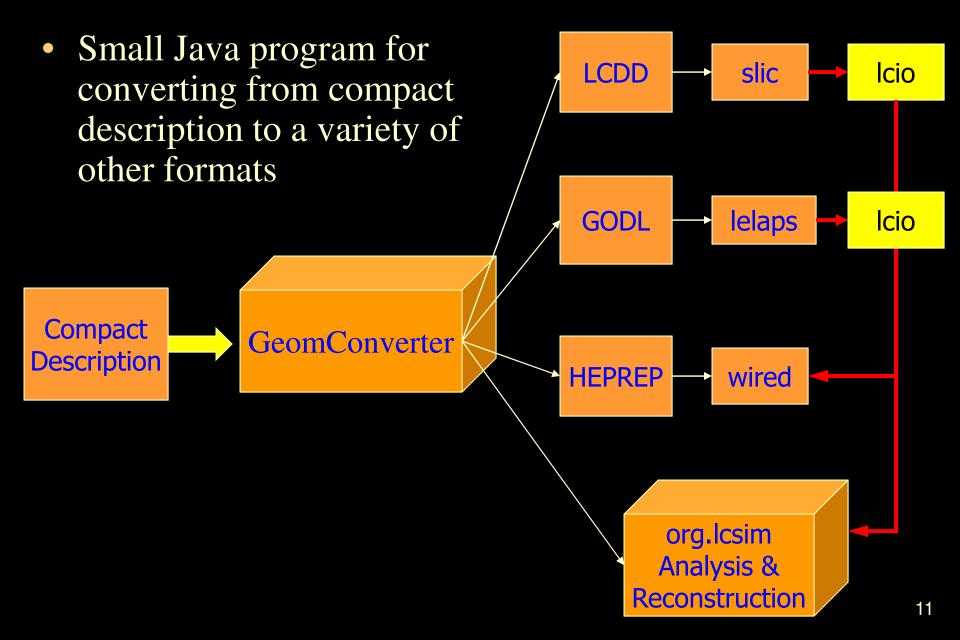
- expressions (CLHEP)
- materials
- solids
- volume definitions
- geometry hierarchy

LCDD Structure

<lcdd></lcdd>	LCDD Root Element
<header></header>	Information about the Detector
<iddict></iddict>	Identifier Specifications
<sensitive_detectors></sensitive_detectors>	Detector Readouts
<limits></limits>	Physics Limits
<regions></regions>	Regions (sets of volumes)
<display></display>	Visualization Attributes
<gdml></gdml>	GDML Root Element
<define></define>	Constants, Positions, Rotations
<materials></materials>	Material Definitions
<solids></solids>	Solid Definitions
<structure></structure>	Volume Hierarchy
<fields></fields>	Magnetic Field

Icdd Features

- **Regions**: production cuts
- **Physics limits**: track length, step length, etc.
- Visualization: color, level of detail, wireframe/solid
- Sensitive detectors
 - calorimeter, optical calorimeter, tracker
 - segmentation
- **ID**s
 - volume identifiers (physvolid)
- Magnetic fields
 - dipole, solenoid, field map
- utilities
 - information on Geant4 stores
 - GDML load/dump


"Compact" Description

- The lcdd file is very descriptive, but therefore also very verbose.
- Can be written by hand, but prone to human error.
 - Also, just specific to the simulation and not easily accessible to reconstruction and visualization.
- Developed a "compact" detector description which encapsulates the basic properties of a detector and which is further processed by code to produce the input specific to different clients.

Compact Detector Description

- A number of generally useful detector types (at least for HEP collider detectors) have been developed, such as:
 - sampling calorimeters
 - TPCs
 - Silicon trackers (microstrip as well as pixel)
 - Generic geometrical support structures
- Can also incorporate GDML snippets
 - Allows inclusion of more complicated volumes derived for instance from engineering (CAD) drawings.

GeomConverter

Compact Description - Example 1 <detector global unique identifier id="3" name="HADBarrel" **global unique name** readout="HcalBarrHits" ------ readout collection vis="HADVis"> visualization settings <dimensions inner_r = "141.0*cm" outer_z = "294*cm" /> <layer repeat="40"> layering -absorber <slice material="Steel235" thickness="2.0*cm"/> <slice material="RPCGasDefault" thickness="0.12*cm" sensitive="yes" region="RPCGasRegion"/> </layer> </detector> sensitive layer

xml: Defining a Tracker Module

<module name="VtxBarrelModuleInner"> <module_envelope width="9.8" length="63.0 * 2" thickness="0.6"/> <module_component width="7.6" length="125.0" thickness="0.26"</pre> material="CarbonFiber" sensitive="false"> <position z="-0.08"/> </module_component> <module_component width="7.6" length="125.0" thickness="0.05" material="Epoxy" sensitive="false"> <position z="0.075"/> </module_component> <module_component width="9.6" length="125.0" thickness="0.1"</pre> material="Silicon" sensitive="true"> <position z="0.150"/> </module component> </module>

xml: Placing the modules

layer module="VtxBarrelModuleInner" id="1">

<barrel_envelope inner_r="13.0" outer_r="17.0" z_length="63 * 2"/><<pre>
<rphi_layout phi_tilt="0.0" nphi="12" phi0="0.2618" rc="15.05" dr="-1.15"/>
<z_layout dr="0.0" z0="0.0" nz="1"/>

</layer>

layer module="VtxBarrelModuleOuter" id="2">

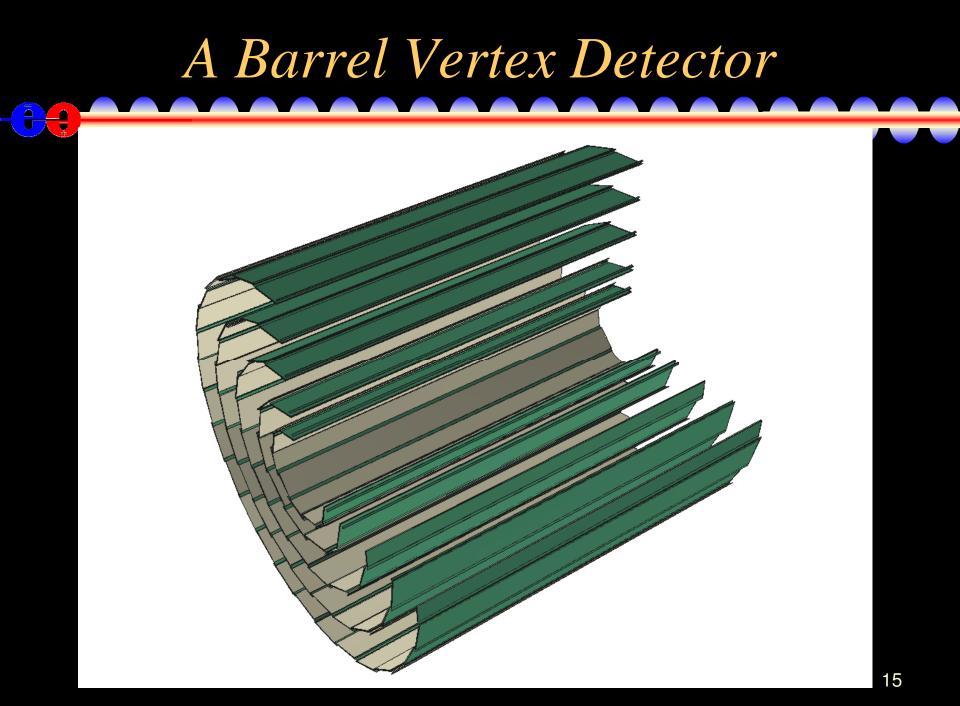
<barrel_envelope inner_r="21.0" outer_r="25.0" z_length="63 * 2"/><rphi_layout phi_tilt="0.0" nphi="12" phi0="0.2618" rc="23.03" dr="-1.13"/><z_layout dr="0.0" z0="0.0" nz="1"/>

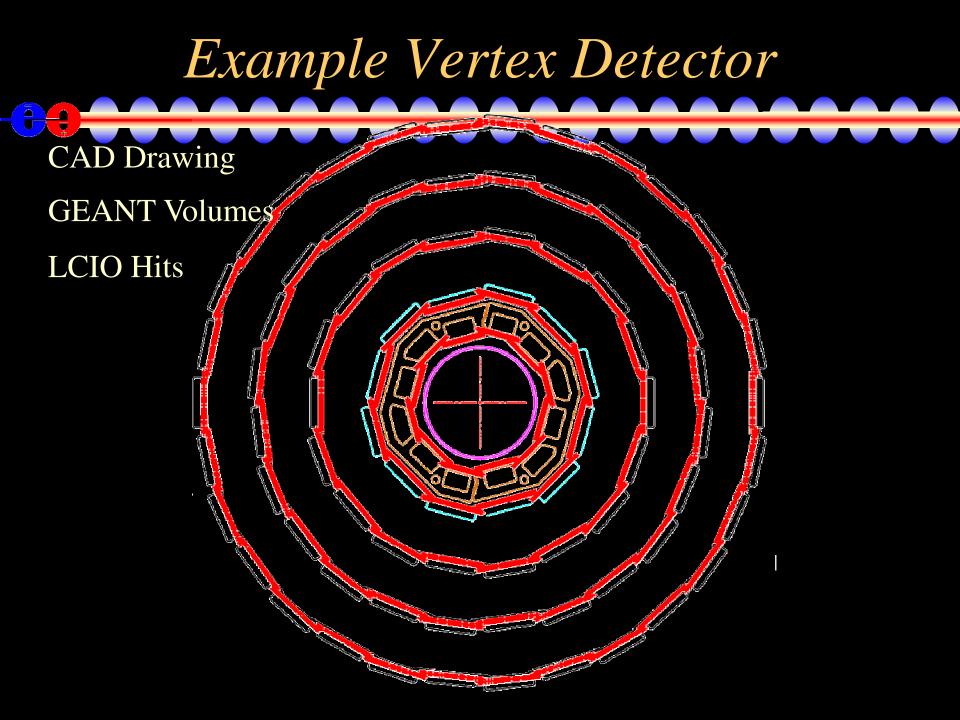
</layer>

```
layer module="VtxBarrelModuleOuter" id="3">
```

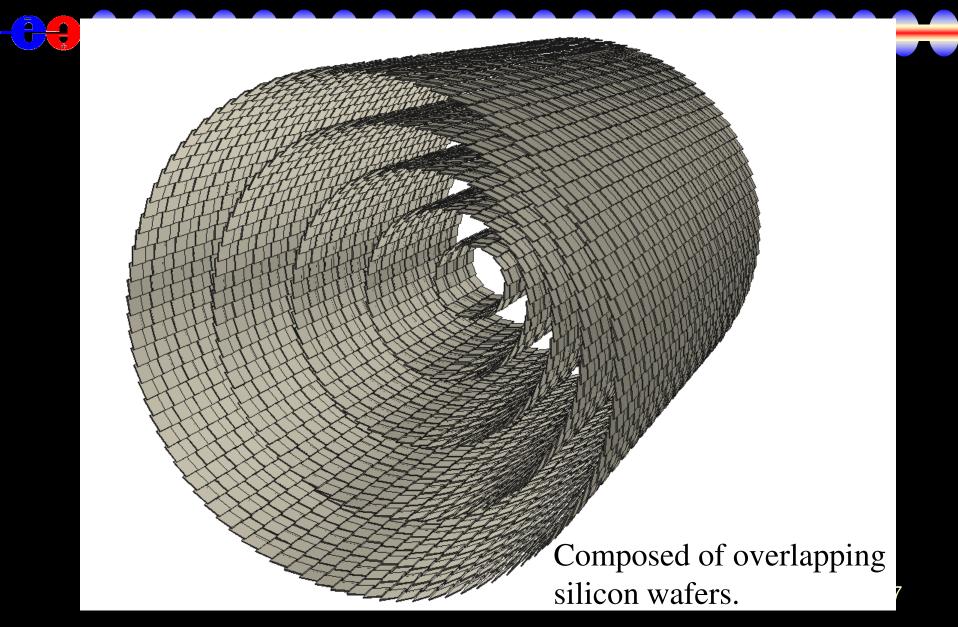

<barrel_envelope inner_r="34.0" outer_r="38.0" z_length="63 * 2"/><rphi_layout phi_tilt="0.0" nphi="18" phi0="0.0" rc="35.79" dr="-0.89"/><z_layout dr="0.0" z0="0.0" nz="1"/>

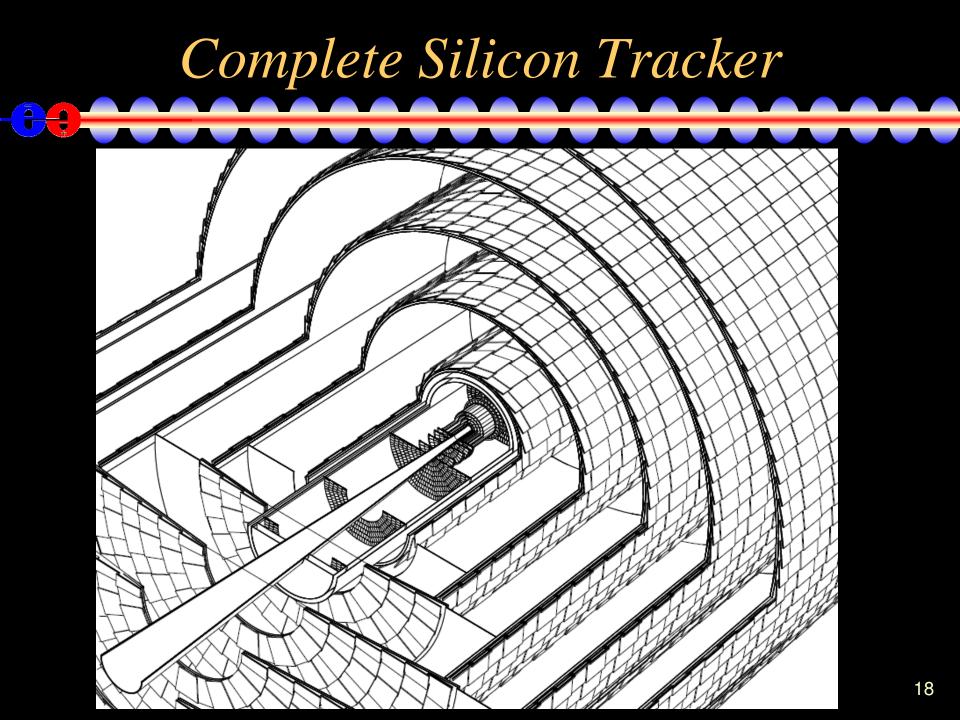
</layer>


```
layer module="VtxBarrelModuleOuter" id="4">
```


<barrel_envelope inner_r="46.6" outer_r="50.6" z_length="63 * 2"/><rphi_layout phi_tilt="0.0" nphi="24" phi0="0.1309" rc="47.5" dr="0.81"/><z_layout dr="0.0" z0="0.0" nz="1"/>

</layer>


```
<layer module="VtxBarrelModuleOuter" id="5">
        <barrel_envelope inner_r="59.0" outer_r="63.0" z_length="63 * 2"/>
        <rphi_layout phi_tilt="0.0" nphi="30" phi0="0.0" rc="59.9" dr="0.77"/>
        <z_layout dr="0.0" z0="0.0" nz="1"/>
```


</layer>

Barrel Outer Tracker

Generic Hits Problem Statement

- We wish to define a generic output hit format for full simulations of the response of detector elements to physics events.
- Want to preserve the "true" Monte Carlo track information for later comparisons.
- Want to defer digitization as much as possible to allow various resolutions, readout technologies, etc. to be efficiently studied.

Types of Hits

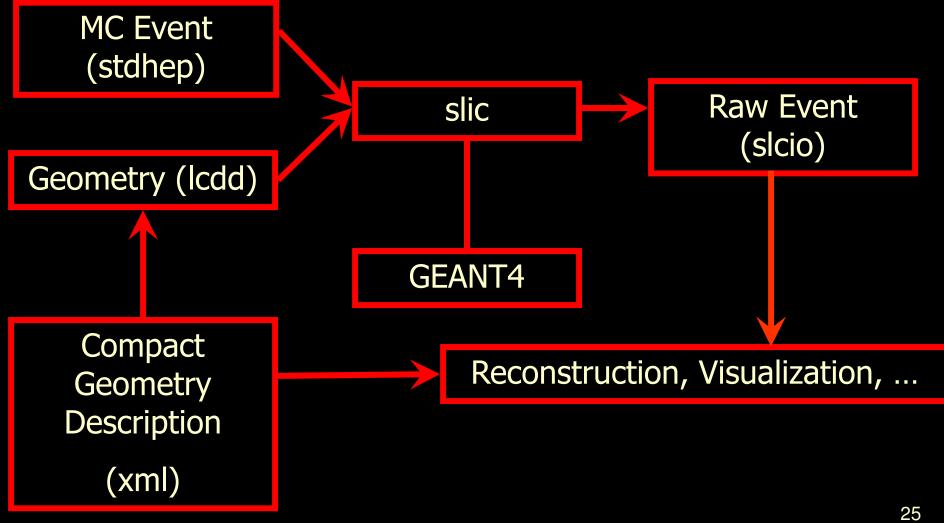
- "Tracker" Hits
 - Position sensitive.
 - Particle unperturbed by measurement.
 - Save "ideal" hit information.
- "Calorimeter" Hits
 - Energy sensitive.
 - Enormous number of particles in shower precludes saving of each "ideal" hit.
 - Quantization necessary at simulation level.

Tracker Hit

- MC Track handle
- Encoded detector ID (detector dependent)
- Hit position in sensitive volume
- Track momentum at hit position.
- Energy deposited in sensitive volume.
- Time of track's crossing.
- Path length in sensitive volume.

Calorimeter Hit

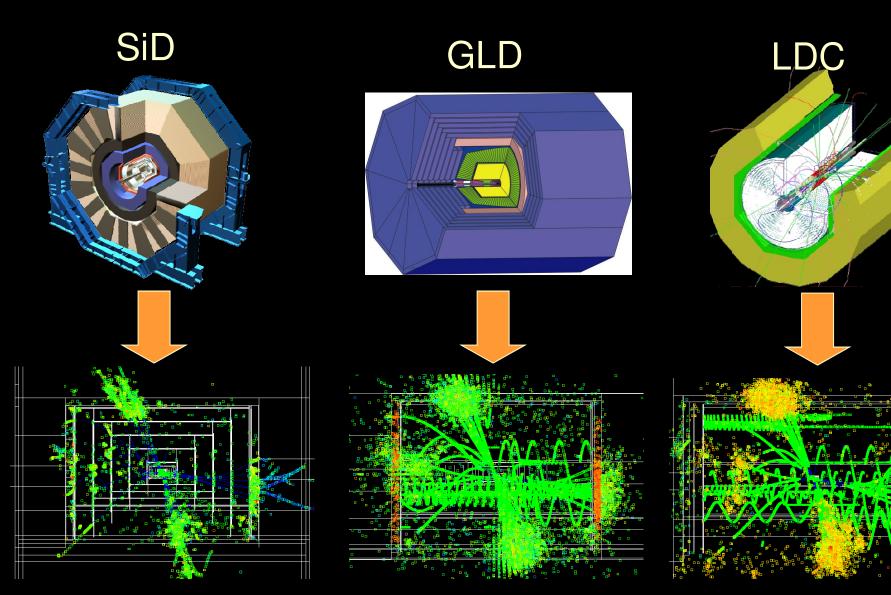
- Encoded detector ID (detector dependent)
- MC IDs for tracks contributing to this cell.
- Energy deposited.
- Time of energy deposition.
- Repeated for each energy contribution.
- Support recently added for optical calorimeters
 Can store Cerenkov and scintillation light.
 - See other talks at this workshop.


LCIO

- Persistency framework for LC simulations.
- Currently uses SIO: Simple Input Output
 - on the fly data compression
 - some OO capabilities, e.g. pointers
 - C++, Java (and FORTRAN!) implementations available
- Changes in IO engine designed for (e.g. root).
- Extensible event data model
 - Generic Tracker and Calorimeter Hits.
 - Monte Carlo particle heirarchy.

slic: The Executable

- Build static executable on Linux, Windows, Mac.
 SimDist build kit uses GNU autoconf
- Commandline or G4 macro control.
- Only dependence is local detector description file.
 - Trivial Grid usage (no database call-backs, etc.)
 - Grid ready, Condor and lsf scripts available.
- Event input via stdhep, particle gun, ...
- Detector input via GDML, lcdd
- Response output via LCIO using generic hits.



Detector Variants

- Runtime XML format allows variations in detector geometries to be easily set up and studied:
 - Sampling calorimeters:
 - absorber materials, dimensions
 - Readout technologies, e.g. RPC, scintillator
 - Layering (radii, number, composition)
 - Readout segmentation (size, projective vs. nonprojective)
 - Total absorption crystal calorimeters
 - Optical properties
 - Tracking detector technologies & topologies
 - TPC, silicon microstrip, silicon pixels

ILC Full Detector Concepts

slic & lcdd: Summary

- Provides a complete and flexible detector simulation package capable of simulating arbitrarily complex detectors with runtime detector description.
- Being used by ILC detector community for simultaneous and iterative evolution of different detector concepts and their variations.
- Being used for ATLAS upgrade tracking studies
- Has been applied to CPT simulations.
- Could be used by other communities (astro, medical) for rapid prototyping or simulation.

Additional Information

- ILC Detector Simulation <u>http://www.lcsim.org</u>
- ILC Forum <u>http://forum.linearcollider.org</u>
 SLIC <u>http://www.lcsim.org/software/slic</u>
 LCDD <u>http://www.lcsim.org/software/lcdd</u>
 GDML <u>http://gdml.web.cern.ch/GDML/</u>
 LCIO <u>http://lcio.desy.de</u>