14th Geant4 Users and Collaboration Workshop

Contribution ID: 137

Type: not specified

Context of session - and proposed agenda

Monday 19 October 2009 14:10 (10 minutes)

** Focus **

Proposed as a working session - focusing on:

* understanding the current use cases for Physics tables (in sequential Geant4 applications)

* understanding the characteristics (and limitations) when used in a multi-process (copy on write) application; * understanding the characteristics and requirements in the use case of a prototype multi-threaded Geant4 application;

* clarifying the requirements for Physics table(s) coming from multi-process and multi-core extensions;

* discussing potential ways to overcome these current weaknesses

* summarising our considerations, as a starting point for a deeper examination and potential revision of the design of the Physics tables to cope with the new requirements.

Summary

Potential agenda

- * Brief introduction to Physics Tables
- (focusing on use cases, requirements) talk of 3-4 slides, ($\tilde{}$ 5 minutes)
- Memory cost of Physics tables

*Considerations and challenges of multi-core (~ 30 minutes)

Mini-presentation: Maximum 10 slides [15 minutes]

- Why share physics tables - either as pages of memory or as objects ?

- Current difficulties in multi-core (mixing of read-only and read-write addresses)

- How are physics tables (and client classes) treated in Xin's Multi-Threaded prototype

Discussion [~15 minutes]

- Challenge of multi-threading (explanation of context in M/T prototype)
- Are there potential benefits for ordinary G4 (sequential) from revising the PhysicsTable implementation?
- * Clarification of use case(s) with focus on multi-core/multi-threading ($\tilde{}$ 20 minutes)
- * Distillation of requirements, potential constraints ($\tilde{}$ 20 minutes)
- * Potential solutions (~ 10 minutes)

Session Classification: Parallel Session I - Particle tables and processes