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1: Why Replace the Current Buildsystem?

● Metaconfig based Configure script becoming increasingly problematic

– System checks (e.g. libraries) not comprehensive

● complete rewrite to fix...
– “Configure -ldlibs” type operations broken 

● Actually a misuse of Metaconfig...
– Makefiles controlled by Environment Variables 

● fragile build of toolkit and applications.

● More seriously

– Metaconfig should be considered OBSOLETE – no upstream support.

– We have a requirement to produce binary packages – better integration needed.
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2: Considerations for Building Geant4
● Geant4 is ultimately a straightforward piece of software

– Dynamic and possibly static libraries (runtime/archive part).

– Header and configuration files (files part)

● From the perspective of building the toolkit there are complexities

– Global vs Granular library builds (or even both!)

– Libraries have optional components (e.g. GDML in libG4persistency)

– Libraries require external packages (e.g. CLHEP)

– Inter-library and external library dependencies.

– Need to build on all supported platforms (Linux flavours, Windows, Mac OSX).

● From the user perspective, we need to provide tools for working with G4

– “Easy build” tool for simple applications (like current Makefile system)

– Tool for querying a Geant4 install for headers/libraries for advanced users.
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3: Evaluation of Replacement Systems
● Evaluation process identified requirements (open for discussion!!) for any 

replacement tool:

– Must work and be supported upstream on all supported Geant4 platforms.

– Must allow Geant4 to be built with all current features.

– Must have an easy to use interface for users and developers.

– Must be easy to use and maintain by the build system developer.

– Should have a minimal set of tools to install, ideally one.

– Should integrate with binary packaging systems with minimal effort.
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4: Choice of Tools for Evaluation
● An evaluation of several well regarded build tools, used on small and very large 

projects, has been carried out.

– GNU Autotools

– SCons

– CMake

● Somewhat arbitrary – tools with largest support and user communities chosen

– Reject internally developed tool as too much work and reinvention of the wheel!

● Tools were used to prototype a partial build of Geant4

– Evaluate system checks, global vs granular lib builds, general ease of use.
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5: GNU Autotools
● The “classic” suite of Autoconf/Automake/Libtool

● Advantages:

– “Standard” of sorts on *NIX systems.

– Many system checks already written (e.g. X11, Qt).

– Familiar and easy to use interface “configure && make && make install”

● Disadvantages:

– 2-3 tools to understand and maintain (phrase “auto-hell” is quite common!)

– No native Windows builds (?), requires Cygwin/MSYS layer.

– Documentation a little opaque, very few “canonical” examples.

● Autotools usable for Geant4 but reject it due to complicated use on 
Windows, and possible issues with maintenance in the future.
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6: SCons
● Relatively new buildsystem based on the Python language.

– Evaluation for Geant4 is still at an early stage.

● Advantages:

– Complete system in one tool – build is literally “scons <options>”

– Supports cross-platform builds.

– Scripted in Python, so familiar syntax.

● Disadvantages:

– Quite low level – many aspects of Geant4 build require (opaque..) Python coding.

– Scalability issues(?) – evidence that larger projects have moved away from SCons.

– Requires Python and SCons (and just because it's Python doesn't mean it's good!!)

● SCons of potential use for Geant4, reject it as frontline system due to level 
of coding needed to support Geant4 – Evaluation will continue!
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7: CMake
● Has existed since early this century, prominence in last few years - scripted in 

“CMake language”, underlying system in C++.

● Advantages:

– Cross-platform support “out the box” and designed to be so.

– “Buildscript generator” - output GNU Makefiles, Eclipse/Visual Studio/XCode projects.

– Many “out the box” system checks (X11, Qt etc), new checks via simple “recipe”

– Very clean and friendly user interfaces.

● Disadvantages:

– Requires CMake, plus at least one tool to run buildscripts.

– Limited documentation – offset by very active user/developer community.

– Need to learn CMake scripting language (though very intuitive)

● Geant4 CMake prototype by far the easiest to develop and use– very 
intuitive scripting, clean interfaces – RECOMMENDED as frontline system.
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8: Geant4 CMake Build Prototype
● Current features:

– Implements a check for CLHEP (though needs cross-platform work)

– Builds of global/granular shared and static libraries.

– Now in process of implementing full cross-platform and external package checks.

● Downloadable from

– http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2

– Just unpack, and the README and README.cmake provide instructions

● Moving to CMake brings many advantages for Geant4 developers and 
users.

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2
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9: CMake Work Cycle: Installing CMake
● In most cases, users and developers won't have to install CMake

– Packaged on all mainline Linux distributions for instance.

● I do not consider having to install CMake a show stopper!

– Installing CMake is trivial – compared to other tools Geant4 needs!

– Binary installers for all platforms available from http://www.cmake.org

● We could, depending on licensing issues, even distribute it with Geant4.

– I don't believe this to be necessary.

● One also needs a build tool – Make, Visual Studio, Xcode.

– Expect people building from source will have these already!

http://www.cmake.org/
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10: CMake Work Cycle: Configuration Setup
● Geant4 CMake enforces an “out of source” build.

– Keeps generated files like Makefiles out of source tree, where they might get 
committed to source control accidentally.

● This brings several major advantages for the user/developer:

– Create different build configurations but only edit one set of code 

● e.g. you want to check your code runs with Qt3 AND Qt4.
– Edit source tree only – each build tree knows about changes when rebuilding

– CMake stores build configuration in a cache file – no environment variables!!

Source
Tree
EDIT

Build 1:
Use Qt3
Build

Build 1:
Use Qt4
Build
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11: CMake Work Cycle: Running Configuration
● You run CMake in the build directory to generate buildscripts for chosen tool.

● Familiar configure step

– Choose build options, e.g. dynamic granular libraries, GDML support

– Check for needed system features.

● Real benefit of CMake – choice of clean, friendly user interfaces.

– Command line

– Ncurses

– Metaconfig-like question and answer

– GUI ( Windows).
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12: CMake Command Line
● Syntax: 

– “cmake <options> <path to source tree>”
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13: CMake NCurses 
● Syntax:

– “ccmake <path to source tree>”
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14: CMake Interactive
● Enabled through the “-i” option on the command line interface:
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15: CMake Gui
● On Windows, can use Cygwin, but also a GUI
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16: CMake User Interfaces Summary
● All these interfaces may just seem like eye-candy.

● Emphasize that they are very intuitive.

● Ncurses on Linux and GUI on Windows very useful for seeing how your build is 
configured.

– Think these will be exceptionally useful for end users.

– Also, storage of build configuration in cache files will help us to debug user problems.

● Much cleaner than controlling through the environment!



21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1818

17: CMake Work Cycle: Build
● Running CMake generates – Makefiles or a Kdevelop3 project or a Visual Studio 

solution etc etc (you can choose!!).

● You then simply use the generated buildscripts with the appropriate tool:
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18: Build Features: Targets
● Nice feature of CMake:

– Each library is a target in the build tool – just build the ones you want.
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19: Build Features: Dependencies

● Libraries can, and should, depend on others.

– Even at granular library level, all dependencies are handled for you.

● However, at the granular library level, the dependency tree is horrific

– The functionality is there to handle this, but questions on scalability.

● We can also build in proper handling of dependencies on external 
libraries
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20: Impact to Developers and Users
● Work cycle very similar to Metaconfig/Make, so familiar

– Perform Configuration, run build tool

● What developers gain:

– Clean, user friendly configuration.

– Better work environment: only one source tree, many different build configurations.

– More choice of build tool: Make, KDevelop3, Eclipse, Visual Studio.

– Much cleaner dependency handling, almost automatically.

● What users gain:

– Clean, intuitive interface.

– In many cases, sensible choice of defaults will give two-click install.
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21: Developer Downsides
● Geant4 Prototype enforces separate build and source trees:

– You will have to get used to this.

● No environment variables!

– Build and source tree method is cleaner though!

● Each granular module MUST provide a sources.cmake file

– Lists all sources, headers and dependencies of the module.

– More work for you, though you SHOULD understand how your code integrates into 
the toolkit.

– You do gain – very robust inter-module dependencies.
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22: User Issues
● A new system for users to learn, and we have to provide

● Tool for “easy build” applications

– CMake can help: it will generate Geant4Config.cmake and UseGeant4.cmake files.

– These enable us to provide a very simple CMake template for users.

– Very much like current makefile system, and more robust and cross-platform.

● Tools for advanced users

– If they want to build with CMake, Geant4Config.cmake and UseGeant4.cmake.

– Work in Progress: geant4-config shell script to query install.
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23: Disadvantages of CMake
● CMake “targets” are groups of sources that end up in, e.g. a library.

– Each source is compiled once for every target it appears in.

– Means that a global/granular+shared/static build results in four compilations.

– An annoyance more than anything (and not CMake specific).

● Global/Granular library build is a slightly awkward

– Each granular module defines a “sources.cmake” file, combining these gives the 
global module source list.

– Also tricky in Automake and Scons.

● Granular library dependencies are spagettified

– Strictly a Geant4 design issue – CMake will handle interlibrary dependencies, but I 
am not yet sure of the scalability given the complexity.

● It should be noted that many of these issues are encountered in other build tools!
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24: Binary Packaging
● CMake is part of a suite of tools, which can be integrated:

– CPack for source/binary packaging

– CTest for unit testing.

● CPack can create:

– UNIX: rpm, deb

– OSX: DragNDrop, Bundles, PackageMaker

– Windows: NSIS, Cygwin source/binary

● So far, prototype only creates source packages.

– “geant4.9.2.1.tar.bz2” etc.

● Work in progress to integrate others – potential for trivial binary 
packaging!
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25: Coding Issues
● There are some coding issues which we might want to address longer term to give 

a cleaner build system and library structure.

● Main case here is #ifdef statements passed through compiler definitions.

– Many “personal” symbols dotted through the code – consistent naming helps!

– Can we just use GEANT4_ALLOC_EXPORT/IMPORT for all symbol visibility control?

● Many libraries are variant depending on configuration choices.

– e.g. libG4persistency MAY contain G4GDMLParser

– Currently only flagged by environment variables (BAD!!!).

– Current idea is to use Geant4Config.cmake and geant4-config scripts to flag these.
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26: Workplan
● If the collaboration decides to adopt CMake, what is the plan for integrating it?

● This is a personal evaluation based on the time I have available for Geant4 work.

– 3-5 months to implement all Geant4 build features with CMake

● Including full cross-platform testing.
● Including creation of all user tools.
● Probably a pre-alpha to alpha release at this point.

– 3 months for testing/refinement/comments.

– At that point a beta release?

– 3 months for bug fixes, addition of CPack packaging.

● I think that by the next collaboration meeting we'll have a working system

– But I emphasize that manpower is limited, and this is a BIG job.
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27: Summary
● Geant4 Metaconfig/Make buildsystem has to be replaced in near term

– Metaconfig has increasing issues, and is OBSOLETE.

● Evaluation of modern build tools has identified CMake as the current best option

– Scons evaluation will continue at low level.

● Prototype Geant4 CMake build available

– http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2

● Brings many nice features for developers/users – interface, dependencies, packaging

● Discussion needed in Collaboration on adoption and workplan.

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2
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