
21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 11

Replacing the Replacing the
Geant4 Build System Geant4 Build System
with Modern Toolswith Modern Tools

Ben MorganBen Morgan

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 22

1: Why Replace the Current Buildsystem?

● Metaconfig based Configure script becoming increasingly problematic

– System checks (e.g. libraries) not comprehensive

● complete rewrite to fix...
– “Configure -ldlibs” type operations broken

● Actually a misuse of Metaconfig...
– Makefiles controlled by Environment Variables

● fragile build of toolkit and applications.

● More seriously

– Metaconfig should be considered OBSOLETE – no upstream support.

– We have a requirement to produce binary packages – better integration needed.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 33

2: Considerations for Building Geant4
● Geant4 is ultimately a straightforward piece of software

– Dynamic and possibly static libraries (runtime/archive part).

– Header and configuration files (files part)

● From the perspective of building the toolkit there are complexities

– Global vs Granular library builds (or even both!)

– Libraries have optional components (e.g. GDML in libG4persistency)

– Libraries require external packages (e.g. CLHEP)

– Inter-library and external library dependencies.

– Need to build on all supported platforms (Linux flavours, Windows, Mac OSX).

● From the user perspective, we need to provide tools for working with G4

– “Easy build” tool for simple applications (like current Makefile system)

– Tool for querying a Geant4 install for headers/libraries for advanced users.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 44

3: Evaluation of Replacement Systems
● Evaluation process identified requirements (open for discussion!!) for any

replacement tool:

– Must work and be supported upstream on all supported Geant4 platforms.

– Must allow Geant4 to be built with all current features.

– Must have an easy to use interface for users and developers.

– Must be easy to use and maintain by the build system developer.

– Should have a minimal set of tools to install, ideally one.

– Should integrate with binary packaging systems with minimal effort.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 55

4: Choice of Tools for Evaluation
● An evaluation of several well regarded build tools, used on small and very large

projects, has been carried out.

– GNU Autotools

– SCons

– CMake

● Somewhat arbitrary – tools with largest support and user communities chosen

– Reject internally developed tool as too much work and reinvention of the wheel!

● Tools were used to prototype a partial build of Geant4

– Evaluate system checks, global vs granular lib builds, general ease of use.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 66

5: GNU Autotools
● The “classic” suite of Autoconf/Automake/Libtool

● Advantages:

– “Standard” of sorts on *NIX systems.

– Many system checks already written (e.g. X11, Qt).

– Familiar and easy to use interface “configure && make && make install”

● Disadvantages:

– 2-3 tools to understand and maintain (phrase “auto-hell” is quite common!)

– No native Windows builds (?), requires Cygwin/MSYS layer.

– Documentation a little opaque, very few “canonical” examples.

● Autotools usable for Geant4 but reject it due to complicated use on
Windows, and possible issues with maintenance in the future.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 77

6: SCons
● Relatively new buildsystem based on the Python language.

– Evaluation for Geant4 is still at an early stage.

● Advantages:

– Complete system in one tool – build is literally “scons <options>”

– Supports cross-platform builds.

– Scripted in Python, so familiar syntax.

● Disadvantages:

– Quite low level – many aspects of Geant4 build require (opaque..) Python coding.

– Scalability issues(?) – evidence that larger projects have moved away from SCons.

– Requires Python and SCons (and just because it's Python doesn't mean it's good!!)

● SCons of potential use for Geant4, reject it as frontline system due to level
of coding needed to support Geant4 – Evaluation will continue!

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 88

7: CMake
● Has existed since early this century, prominence in last few years - scripted in

“CMake language”, underlying system in C++.

● Advantages:

– Cross-platform support “out the box” and designed to be so.

– “Buildscript generator” - output GNU Makefiles, Eclipse/Visual Studio/XCode projects.

– Many “out the box” system checks (X11, Qt etc), new checks via simple “recipe”

– Very clean and friendly user interfaces.

● Disadvantages:

– Requires CMake, plus at least one tool to run buildscripts.

– Limited documentation – offset by very active user/developer community.

– Need to learn CMake scripting language (though very intuitive)

● Geant4 CMake prototype by far the easiest to develop and use– very
intuitive scripting, clean interfaces – RECOMMENDED as frontline system.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 99

8: Geant4 CMake Build Prototype
● Current features:

– Implements a check for CLHEP (though needs cross-platform work)

– Builds of global/granular shared and static libraries.

– Now in process of implementing full cross-platform and external package checks.

● Downloadable from

– http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2

– Just unpack, and the README and README.cmake provide instructions

● Moving to CMake brings many advantages for Geant4 developers and
users.

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1010

9: CMake Work Cycle: Installing CMake
● In most cases, users and developers won't have to install CMake

– Packaged on all mainline Linux distributions for instance.

● I do not consider having to install CMake a show stopper!

– Installing CMake is trivial – compared to other tools Geant4 needs!

– Binary installers for all platforms available from http://www.cmake.org

● We could, depending on licensing issues, even distribute it with Geant4.

– I don't believe this to be necessary.

● One also needs a build tool – Make, Visual Studio, Xcode.

– Expect people building from source will have these already!

http://www.cmake.org/

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1111

10: CMake Work Cycle: Configuration Setup
● Geant4 CMake enforces an “out of source” build.

– Keeps generated files like Makefiles out of source tree, where they might get
committed to source control accidentally.

● This brings several major advantages for the user/developer:

– Create different build configurations but only edit one set of code

● e.g. you want to check your code runs with Qt3 AND Qt4.
– Edit source tree only – each build tree knows about changes when rebuilding

– CMake stores build configuration in a cache file – no environment variables!!

Source
Tree
EDIT

Build 1:
Use Qt3
Build

Build 1:
Use Qt4
Build

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1212

11: CMake Work Cycle: Running Configuration
● You run CMake in the build directory to generate buildscripts for chosen tool.

● Familiar configure step

– Choose build options, e.g. dynamic granular libraries, GDML support

– Check for needed system features.

● Real benefit of CMake – choice of clean, friendly user interfaces.

– Command line

– Ncurses

– Metaconfig-like question and answer

– GUI (Windows).

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1313

12: CMake Command Line
● Syntax:

– “cmake <options> <path to source tree>”

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1414

13: CMake NCurses
● Syntax:

– “ccmake <path to source tree>”

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1515

14: CMake Interactive
● Enabled through the “-i” option on the command line interface:

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1616

15: CMake Gui
● On Windows, can use Cygwin, but also a GUI

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1717

16: CMake User Interfaces Summary
● All these interfaces may just seem like eye-candy.

● Emphasize that they are very intuitive.

● Ncurses on Linux and GUI on Windows very useful for seeing how your build is
configured.

– Think these will be exceptionally useful for end users.

– Also, storage of build configuration in cache files will help us to debug user problems.

● Much cleaner than controlling through the environment!

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1818

17: CMake Work Cycle: Build
● Running CMake generates – Makefiles or a Kdevelop3 project or a Visual Studio

solution etc etc (you can choose!!).

● You then simply use the generated buildscripts with the appropriate tool:

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 1919

18: Build Features: Targets
● Nice feature of CMake:

– Each library is a target in the build tool – just build the ones you want.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2020

19: Build Features: Dependencies

● Libraries can, and should, depend on others.

– Even at granular library level, all dependencies are handled for you.

● However, at the granular library level, the dependency tree is horrific

– The functionality is there to handle this, but questions on scalability.

● We can also build in proper handling of dependencies on external
libraries

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2121

20: Impact to Developers and Users
● Work cycle very similar to Metaconfig/Make, so familiar

– Perform Configuration, run build tool

● What developers gain:

– Clean, user friendly configuration.

– Better work environment: only one source tree, many different build configurations.

– More choice of build tool: Make, KDevelop3, Eclipse, Visual Studio.

– Much cleaner dependency handling, almost automatically.

● What users gain:

– Clean, intuitive interface.

– In many cases, sensible choice of defaults will give two-click install.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2222

21: Developer Downsides
● Geant4 Prototype enforces separate build and source trees:

– You will have to get used to this.

● No environment variables!

– Build and source tree method is cleaner though!

● Each granular module MUST provide a sources.cmake file

– Lists all sources, headers and dependencies of the module.

– More work for you, though you SHOULD understand how your code integrates into
the toolkit.

– You do gain – very robust inter-module dependencies.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2323

22: User Issues
● A new system for users to learn, and we have to provide

● Tool for “easy build” applications

– CMake can help: it will generate Geant4Config.cmake and UseGeant4.cmake files.

– These enable us to provide a very simple CMake template for users.

– Very much like current makefile system, and more robust and cross-platform.

● Tools for advanced users

– If they want to build with CMake, Geant4Config.cmake and UseGeant4.cmake.

– Work in Progress: geant4-config shell script to query install.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2424

23: Disadvantages of CMake
● CMake “targets” are groups of sources that end up in, e.g. a library.

– Each source is compiled once for every target it appears in.

– Means that a global/granular+shared/static build results in four compilations.

– An annoyance more than anything (and not CMake specific).

● Global/Granular library build is a slightly awkward

– Each granular module defines a “sources.cmake” file, combining these gives the
global module source list.

– Also tricky in Automake and Scons.

● Granular library dependencies are spagettified

– Strictly a Geant4 design issue – CMake will handle interlibrary dependencies, but I
am not yet sure of the scalability given the complexity.

● It should be noted that many of these issues are encountered in other build tools!

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2525

24: Binary Packaging
● CMake is part of a suite of tools, which can be integrated:

– CPack for source/binary packaging

– CTest for unit testing.

● CPack can create:

– UNIX: rpm, deb

– OSX: DragNDrop, Bundles, PackageMaker

– Windows: NSIS, Cygwin source/binary

● So far, prototype only creates source packages.

– “geant4.9.2.1.tar.bz2” etc.

● Work in progress to integrate others – potential for trivial binary
packaging!

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2626

25: Coding Issues
● There are some coding issues which we might want to address longer term to give

a cleaner build system and library structure.

● Main case here is #ifdef statements passed through compiler definitions.

– Many “personal” symbols dotted through the code – consistent naming helps!

– Can we just use GEANT4_ALLOC_EXPORT/IMPORT for all symbol visibility control?

● Many libraries are variant depending on configuration choices.

– e.g. libG4persistency MAY contain G4GDMLParser

– Currently only flagged by environment variables (BAD!!!).

– Current idea is to use Geant4Config.cmake and geant4-config scripts to flag these.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2727

26: Workplan
● If the collaboration decides to adopt CMake, what is the plan for integrating it?

● This is a personal evaluation based on the time I have available for Geant4 work.

– 3-5 months to implement all Geant4 build features with CMake

● Including full cross-platform testing.
● Including creation of all user tools.
● Probably a pre-alpha to alpha release at this point.

– 3 months for testing/refinement/comments.

– At that point a beta release?

– 3 months for bug fixes, addition of CPack packaging.

● I think that by the next collaboration meeting we'll have a working system

– But I emphasize that manpower is limited, and this is a BIG job.

21/10/0921/10/09 14th Geant4 Collaboration Workshop14th Geant4 Collaboration Workshop 2828

27: Summary
● Geant4 Metaconfig/Make buildsystem has to be replaced in near term

– Metaconfig has increasing issues, and is OBSOLETE.

● Evaluation of modern build tools has identified CMake as the current best option

– Scons evaluation will continue at low level.

● Prototype Geant4 CMake build available

– http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2

● Brings many nice features for developers/users – interface, dependencies, packaging

● Discussion needed in Collaboration on adoption and workplan.

http://www2.warwick.ac.uk/fac/sci/physics/staff/research/bmorgan/geant4/geant4-9.2.1.tar.bz2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

