GEANT4 simulation project on the AMS facility,

ARTEMIS, at LMC14 in Saclay, France

Anita QUILES, Christophe MOREAU, Dominique BAVAY

14th Geant4 Users and Collaboration Workshop

15-22 October 2009

Laboratori Nazionali del Sud-INFN

The LMC14 laboratory

The accelerator mass spectrometry : detecting naturally long-lived radio-istopes.

ARTEMIS facility: AMS installed at Saclay in France in 2003, dedicated to radiocarbon dating.

New research project at LMC14: simulating the ion beam across all the elements.

GEANT4 simulation project on the AMS facility, ARTEMIS, at LMC14 in Saclay, France

- I. Introduction
- I. ARTEMIS, an Accelerator Mass Spectrometer facility
- I. TRANSPORT Tool
- I. GEANT4 Toolkit
- I. Conclusion

Radiocarbon dating: principle

- ✓ Determination of the ¹⁴C/¹²C and ¹³C/¹²C rates of a died organism

Age of the dead organism

New technical approach: the accelerator mass spectrometry

Measure of very small samples (less than 1mg of carbon)

ARTEMIS facility:

- A 3 MV NEC Pelletron Accelerator coupled to a spectrometer
 - ✓ Measuring the ¹²C and ¹³C currents
 - ✓ Counting the ¹⁴C ions by isobaric discriminations

- Finding out the most sensitive points of the machine
- Comparing the experimental parameters of the facility with an ion opticion
- Controlling for each tuning that there is no bad tuning (e.g beam lost during transportation)
- Studing annoyances like isobaric beam (CH problem, beam interaction with residual gas...)

- Finding out the most sensitive points of the machine
- Comparing the experimental parameters of the facility with an ion optic simulation
- Controlling for each tuning that there is no bad tuning (e.g beam lost during transportation)
- Studing annoyances like isobaric beam (CH problem, beam interaction with residual gas...)

- Finding out the most sensitive points of the machine
- Comparing the experimental parameters of the facility with an ion optic simulation
- Controlling for each tuning that there is no bad tuning (e.g beam lost during transportation)
- Studing annoyances like isobaric beam (CH problem, beam interaction with residual gas...)

- Finding out the most sensitive points of the machine
- Comparing the experimental parameters of the facility with an ion optic simulation
- Controlling for each tuning that there is no bad tuning (e.g beam lost during transportation)
- Studing annoyances like isobaric beam (CH problem, beam interaction with residual gas...)

- Finding out the most sensitive points of the machine
- Comparing the experimental parameters of the facility with an ion optic simulation
- Controlling for each tuning that there is no bad tuning (e.g beam lost during transportation)
- ➤ Studing annoyances like isobaric beam (CH problem, beam interaction with residual gas...)

ARTEMIS, an Accelerator Mass Spectrometer facility

- \rightarrow ECA : the ¹⁴C³⁺ ions last energy analysis in case of ¹³Cⁿ⁺H recombinations.
- → An ionization chamber detects the 14C3+ ions

Low Energy **Steerers** Steerers First convergence of the beam **Einzel Lens** 70 keV **Electrostatic Elements** → Einzel Lens: 18kV (sources) **Magnetic Elements** →Einzel Lens: 44kV (before accelerator →Steerers (electrostatic and magnetic)

Low Energy Einzel Lens Steerers Getting a focal point which insures no loss in the beam 70 keV **Electrostatic Elements** → Einzel Lens: 18kV (sources) **Magnetic Elements** →Einzel Lens: 44kV (before accelerator →Steerers (electrostatic and magnetic)

TRANSPORT¹ program, first approach to

- ✓ understand the design
- ✓ observe the behavior of electrostatic and magnetic elements.

TRANSPORT calculates

- √ transfer matrix
- ✓ beam matrix
- ✓ properties of the beam...

1: PSI Graphic Transport Framework by U. Rohrer based on a CERN-SLAC-FERMILAB version by K.L. Brown et al

What was simulated by TRANSPORT tool?

How elements were simulated by TRANSPORT tool?

ARTEMIS beam emittance

First conclusions thanks to TRANSPORT Tool

- > TRANSPORT gives a global view of the beam emittance:
 - Maximum spatial extend of the beam : magnetic quadrupole doublet
 - ➤ Focal point (minimum extent) between electrostatic quadrupole Triplet and Bending Magnet 110°

➤TRANSPORT assets:

- > Great simulations of the quadrupole (magnetic and electrostatic)
- > Emittance behavior

TRANSPORT limitations:

- ➤ No good modeling for electrostatic elements such as Einzel lens or deflectors...
- ➤ No physical processes taking into account (stripping, ...)

GEANT4 ToolKit

Why using GEANT4 ToolKit?

We are just at the beginning of the project !!!

- ✓ Detecting if there are recombinations (¹³CH, ¹²CH, ¹²CH₂) and in which abundance
- ✓ Choosing the most relevant detector
- ✓ Predicting and controlling the settings of ARTEMIS facility

Particles and processes

Particles and processes

Electrostatic elements

Magnetic elements

Ionization process

INTRODUCTION AMS Artemis TRANSPORT Tool GEANT4 ToolKit CONCLUSIO

► Ionization processes

GEANT4 Simulation of the beam Line

So, the ARTEMIS facility simulation requires:

- \checkmark Create ¹⁴C⁻, ¹⁴C³⁺, ¹³C⁻, ¹³C³⁺, ¹²C⁻, ¹²C³⁺ ions
- ✓ Get field cards :
 - Magnetic ones for : magnet, quadrupoles, steerers
 - Electrostatic ?(deflectors, quadrupoles, steerers, accelerator)

✓ Ionization processes

✓ Specifical application for detectors: choose the most relevant one

Technical questions ...

<u>Identication of difficult points for the simulation:</u>

- ✓ How to simulate the stripping process?
- ✓ How to simulate the Cs Sources?
- ✓ How can we get and use field card for the magnetic elements.

How to simulate the stripping process?

Do we need and how to simulate the Cs Sources?

Cs vaporization (state change)

Cs Ionization to get Cs+

C ionization to get C

CONCLUSION

First step of the project:

TRANSPORT Tool => get emittance behavior of the beam

- Second Step of the Project: GEANT4 Toolkit
 - ✓ Aims
- ❖ Detecting if there are recombinations
- Choosing the most adapted detector
- Predicting and controlling the settings of ARTEMIS facility
- ✓ Difficulties meeting with:
 - Cs Sources
 - Stripping process
 - *Accelerator

Thank you for your attention!

Mail:

anita.quiles@cea.fr

Adress:

Laboratoire de Mesure du Carbone 14

CEA-Saclay

Bât 450 porte 4^E,

91191 Gif-Sur-Yvette