14th Geant4 Users' and Collaboration Workshop Catania, 15-22 October 2009

Applications of Geant4 in space (recent developments)

Giovanni Santin*, Petteri Nieminen

Space Environments and Effects Analysis Section
European Space Agency
ESTEC
* on loan from RHEA Tech Ltd

Outline

- Geant4 Space Users' community
- Highlights from 2009 workshop (Madrid)
- Other Geant4 based work
- Enabling developments

Geant4 Space Users' community

- Geant4 Space Users' web page
 - Users, publications, news
 - http://geant4.esa.int
 - Feedback appreciated
- Space Users' Workshops (since 2003)
- Hyper-news: "Space applications" forum

- http://www.inta.es/g4suw2009/
- ~60 participants
 Wide range of interests and applications
- The following section contains an arbitrary, non exhaustive selection of contributions from the event

Geant4 Space Users' 2009 Planetary exploration

MarsREM

ESA contract (QinetiQ, LIP, BIRA, DHC, SpaceIT)

- ESA exploration programme
- Physics:
 - High energy high Z ion interactions (radiation safety)
 - Filling gaps identified in previous HSF-related studies, e.g. ESA DESIRE (T.Ersmark, KTH)
 - DPMJET2.5 interface
- Tool development
 - dMEREM
 - eMEREM addressing engineering requirements
 - Active magnetic shielding
- SPENVIS interface
- Presented by P.Truscott at NSREC 2008, IAC 2008

MarsREM - DPMJET interface

Implementation of DPMJET-II.5 model in Geant4

- Priority to extend the high-energy regime of Geant4 to ultra-relativistic energies
- Existing FORTRAN code DPMJET-II.5 to act as an event generator: 5GeV/nuc to 1E+11 GeV/nuc
- Geant4 DPMJET-II.5 interface: G4DPMJET2 5Model class now developed and tested, covers projectiles from A=2 to A=58 on targets from A=2 to A=58
 - Currently extending this to projectiles from A=2 to A=240 on targets from A=2 to A=240
- After prompt nuclear-nuclear collisions, nuclear de-excitation treated using other Geant4 models (precompound, evaporation, Fermi break-up)
- Total inelastic cross-section class G4DPMJET2 5CrossSection also created to estimate mean-free-path between nuclear-nuclear collisions, and also covers projectiles from A=2 to A=58 on targets from A=2 to A=58

(similarly being extended to A=240)

Models used on Detailed Mars Energetic Radiation Environment Model (dMEREM) to be presented

1.E+00

ESA contract (QinetiQ, LIP, BIRA, DHC, SpaceIT)

MarsREM - eMEREM

- Fast, engineering tool
- Response matrices (note: generated with FLUKA)
- Rapid calculation of
 - radiation particle fluence and LET spectra.
 - radiobiological dose
- Available on ESA SPENVIS system
- Future work includes heavy ions contribution.

P.Truscott et al., NSREC 2008

ESA contract (QinetiQ, LIP, BIRA, DHC, SpaceIT)

average soil composition (solid) and water ice (dashed)

Jupiter - JUNO

Perijove Passage through Jupiter's Radiation Environment

- Juno trajectory exposes spacecraft to the Jovian radiation belts one day per orbit
 - orbit – Electrons
- Protons
 Early orbits are
- relatively benign
 25% of the mission
- TID received by the end of Orbit 17
- Late orbits are severe
 - 25% of the mission TID received over the last 4 orbits

May 20, 2009 Kang - 15

Shawn Kang, Insoo Jun, JPL

Jupiter - Galileo

Shawn Kang, Insoo Jun, JPL

Jupiter - JEO

Insoo Jun, JPLJupiter Europa Orbiter

The estimated TID radiation design environment for JEO is similar to the estimated end-of-mission Galileo environment

For Planning and Discussion Purposes Only

Parts Capabilities Radiation Requirements Comparison

Aspect	Military GEO*	Military MEO*	JEO
Mission Duration	15 yr	6 to 10 yr	9 yr
Parts TID Capability	<100 krad	100 to 300 krad	300 krad desired
Mission Dose	500 krad @100 mil Al	800 krad @100 mil Al	2.9 Mrad @100 mil Al
Shielding Effectiveness	Down to <10 krad	Down to ~20 krad	<100 krad very massive
DD Dose	Up to 6x10 ¹¹ eq.N/cm ²	>2x10 ¹² eq. N/cm ²	2x10 ¹² eq. N/cm ²
Planetary Protection	No Requirement	No Requirement	Required

* GEO: Geostationary Earth Orbit; MEO: Medium Earth Orbit

JEO parts requirements are similar to MEO Military Satellites, though shielding limitations and planetary protection pose significant challenges

For Planning and Discussion Purposes Only

JORE²M²

Jupiter Radiation Environment & Effect Models and Mitigations

esa

- http://reat.space.ginetig.com/jorem/
- Engineering tools for the prediction of the environment and effects/mitigation analysis
- Proton and electron flux-maps in B-L* space for the complete Jovian environment
- Development of models for the energetic ion environment (helium, carbon, oxygen and sulphur)

Of relevance here:

- Review of radiation effects analysis tools (not only Geant4-based)
- Implementation of updated version of PLANETOCOSMICS
 - trapped particle radiation incident upon the Galilean moons
 - including consideration of the Jovian and local fields.
- New tool based on genetic algorithms and MULASSIS
 - optimisation of radiation shields in combined e⁻ and proton environment.

ESA contract (QinetiQ, Onera, DHC)

SPENVIS: other planets

Mars, Jupiter

Highlights from 2009 Space Users' workshop

Geant4 in JAXA Application to JAXA's Science Missions

Masanobu Ozaki (ISAS/JAXA)

Highlights from 2009 Space Users' workshop

Geant4 in JAXA Application to JAXA's Science Missions

Masanobu Ozaki (ISAS/JAXA)

Gamma ray astronomy

Ph.D. thesis by S. Takeda (University of Tokyo, 2009)

Geant4 simulation: angular resolution

The energy dependency of the angular resolution is represented well.

(ISAS/JAXA)

 Position resolution, energy resolution and Doppler broadening are taken into account 6th G4SUWS at Madrid, M. Ozaki

Highlights from 2009 Space Users' workshop

Geant4 in JAXA

Application to JAXA's Science Missions

Masanobu Ozaki (ISAS/JAXA)

Gamma-ray astronomy

cosmic photons

activation

Ph.D. thesis by S. Takeda (University of Tokyo, 2009)

on-axis

Geant4 simulation: on-orbit BGDs

- BGD src: albedo neutrons, albedo photons, cosmic photons and activation by cosmic protons
- LEO (low activation by cosmic protons)

Geant4 Space Users' 2009 Single Event Effects

MRED

- Robert Reed, Vanderbilt University
- Geant4 integration with TCAD and SPICE

SEE basic mechanisms

Fundamental Aspects of Radiation Event Generation for Simulation of Space Electronics

R. A. Weller¹, M. H. Mendenhall¹, R. A. Reed¹, M. A. Clemens¹, N. A. Dodds¹, B. D. Sierawski¹, K. M. Warren¹, R. D. Schrimpf¹, L. W. Massengill¹ T. Koi², D. Wright², and M. Asai²

¹Institute for Space & Defense Electronics, Vanderbilt University ²Stanford Linear Accelerator Laboratory, Stanford University

Acknowledgements

- DTRA 6.1: HDTRA1-08-1-0034 and HDTRA1-08-1-0033
- DTRA 6.2: Radiation Hardened Microelectronics Program NASA GSFC: NASA Electronic Parts and Packaging (NEPP) Program

General SEU Rate Prediction

The general rate expression:

$$R = -\sum_{z} \int_{All\ E} dE \int_{\hat{n}\cdot\hat{e}<0} d\Omega \oint d\vec{A} \cdot \vec{\Phi}(z, E, \hat{e}, \vec{x}) \times P_u(z, E, \hat{e}, \vec{x})$$

Definitions: $p_c(l) = \frac{1}{\pi A} \int d^2x \int d\Omega (-\hat{e} \cdot \hat{n}(\vec{x})) UnitStep(-\hat{e} \cdot \hat{n}(\vec{x})) \delta(l - h(\hat{e}, \vec{x}))$

Assumptions:

$$F(s) = \sum_{z} \sum_{i} \frac{\Phi(z, E_{i})}{\left(\frac{dS(z, E)}{dE}\right)_{E=E_{i}}}$$

 $\vec{\Phi}(z, E, \hat{e}, \vec{x}) = \Phi(z, E)\hat{e}$ $P_{u}(z, E, \hat{e}, \vec{x}) = \int P_{d}(z, E, \hat{e}, \vec{x}, E_{d}) \times P_{u}(E_{d}) dE_{d}$

 $P_c(l) = \int_{0}^{\infty} p_c(x) dx$

 $P_d(z, E, \hat{e}, \vec{x}, E_d) = \delta(E_d - h(\hat{e}, \vec{x}) \cdot S(z, E))$

Math!

 $R(E_c) = \pi A \int_{c}^{s_{\text{max}}} F(s) \cdot P_c(\frac{E_c}{c}) ds$ Geant4 Space Users Workshop, Madrid, May 2009

later expanded for RADECS 2009 short course

Bob Weller, Vanderbilt University

LET Spectra Comparison

56 GeV Fe on C

Energy Deposition in an Fe Cube

1 µm3 sensitive volume in a 5 µm cube.

Geant4 Space Users' 2009 Uncertainties in standard practice and margins

VALCOMPT

Comparison and Validation of 3D Shielding Analysis Tools for Space Applications

Fan Lei, Pele Truscoll Aerospace Division, QinetiQ

Giovanni Santin and Petteri Nieminen ESTEC,ESA

Geant4 Space User Workshop Madrid, 21/05/2009

QinetiQ

© Copyright QinetiQ Limited 2009

REEF Experiment Setup

RADFET. REM TOT600 type from REM Oxford Ltd.

TLDs: Harshaw EXTRAD type

QinetiQ

Copyright QinetiQ Limited 2009

3D Geometries & Detector locations

Shell/wall thickness: (mm)	0.1, 0.5, 1, 5, 10, 20		
Overall dimensions :			
Spherical shell:	1m (Ø)		
Вох:	1m x 1m x 0.5m		
Cylindrical shell:	1m (Ø) x 0.5m		

Det.No.	1	2	3	4	5
X-pos (mm)	0	100	200	300	400
Distance to nearest surface	500	400	300	200	100

The details of the geometry model used in the study.

The detector locations in spherical shell geometries.

Det. No.	-1	2	3	4	5	6	7	8	9	10	11
X-pos (mm)	0	100	200	300	400	0	0	100	200	300	400
Z-pcs (mm)	0	n	n	0	0	100	200	200	200	200	200
Distance to nearest surface	250	250	250	200	100	150	50	50	50	50	50

Created in GDML format, used by both the SSAT and GRAS tools

The detector locations in box and cylindrical shell geometries.

QinetiQ

Results -2

QinetiQ

© Copyright QinciiQ Limited 2000

Geant4 VS NOVICE adjoint and raytracing

Other published work

A generic X-ray tracing toolbox in Geant4

Giuseppe Vacanti, Ernst-Jan Buis, Maximilien Collon, Marco Beijersbergen, Chris Kelly cosine, Niels Bohrweg 11, 2333 CA, Leiden, The Netherlands

PTOC. OF SPIE VOI. / 350 / 350/02-1

- Validation with simplified XMM
 - Simulated effective area within
 5% of measured one
- Metrology model input
- Applied to IXO mirror design
- Developments offered to the Geant4 collaboration

Selected publications

http://geant4.esa.int

High Energy X-ray Spectrometer on Chandrayaan-1

P. Sreekumar^{1,*}, Y. B. Acharya², C. N. Umapathy¹, M. Ramakrishna Sharma¹, Shanmugam², A. Tyagi¹, Kumar¹, S. Vadawale², M. Sudhakar¹, L. Abraham¹, R. Kulkani¹, S. Purohit², R. L. Premlatha¹, D. Banerjee², M. Bug¹ and J. N. Goswami²

¹ISRO Satellite Centre, Bangalore 560 017, India

- India's first planetary exploration lunar mission
- High Energy X-ray spectrometer (HEX) 30–270 keV natural gamma rays from surface
- Transport of volatiles on the lunar surface
 - Detected from 46.5 keV line ²¹⁰Pb decay (from volatile ²²²Rn)

- Geant4: continuum from GCR interaction in regolith
- High energy tail attenuated by Compton in soil
- Rejection of partial energy deposit events (Compton) by CsI(TI) anticoincidence

Selected publications

http://geant4.esa.int

²Physical Research Laboratory, Ahmedabad 380 009, India

Gamma-ray detector on board lunar mission Chang'e-1

J. Chang^{1*†}, T. Ma¹, N. Zhang¹, M.S. Cai¹, Y.Z. Gong¹, H.S. Tang¹, R.J. Zhang¹, N.S. Wang¹, M. Yu¹, J.P. Mao¹, Y.L. Zhou², J.Z. Liu², A.A. Xu³ and L.G. Liu³

³MACAU University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

esa

GRS instrument

 Study of chemical element distribution on the Moon surface

- Experimental calibration
 - Gamma-ray sources
 - Geant4 validation

¹Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008, China

²National Astronomical Observatory, 20A Datun Road, Beijing 100012, China

HZE Particle and Neutron Dosages from Cosmic Rays on the Lunar Surface

Kanako Hayatsu*, Makoto Hareyama, Shingo Kobayashi, Naoyuki Yamashita, Kunitomo Sakurai and Nobuyuki Hasebe

Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Proc. Int. Workshop Advances in Cosmic Ray Science J. Phys. Soc. Jpn. **78** (2009) Suppl. A, pp. 149-152 © 2009 The Physical Society of Japan

Selected publications

http://geant4.esa.int

- Ambient dose equivalent at Moon surface
- Galactic Cosmic Rays
 - Secondary neutrons / gammas
- SEP protons and ions
- Shielding effectiveness

	Al shield thickness	H*(1	$(0)_{SEP}$ [n	nSv]
	$[g/cm^2]$	Н	He	O
SEP 2003/10/28	0.0	2045.7	113.0	30.8
	1.0	1178.4	53.4	2.5
	2.0	663.7	24.4	0.0
	5.0	287.4	7.0	0.0
	10.0	3.3	0.0	0.0
SEP 2005/1/20	0.0	216.7	16.8	11.0
	1.0	155.1	12.0	5.0
	2.0	113.6	8.7	0.2
	5.0	82.4	6.3	0.3
	10.0	10.2	0.8	0.1
GCR Solar Min.	0.0	39.6	17.5	110.0
	1.0	39.7	17.5	121.2
	2.0	39.7	17.4	31.4
	5.0	41.0	18.2	37.5
	10.0	32.0	11.8	22.0

	$H^*(10)$ [mSv/yr] for GCRs				
]	highland regio	n	mare region	
	Solar Min.	Solar Avg.	Solar Max.	Solar Avg.	
Primary	758.5	519.8	265.8	519.8	
Neutron	72.9	51.9	25.4	56.3	
Gamma Ray	3.3	2.5	1.6	2.5	
Total	834.7	574.2	292.8	578.6	

	Sv] for SEPs				
highland region					
2003	2005				
2189.5	246.4				
5.9	_				
0.9	_				
2196.3	246.4				

More papers...

- Simulation of ALTEA calibration data with PHITS, FLUKA and GEANT4
 NIM B, in press
 C. La Tessa et al.
- Instrument Simulation for the Analysis of Cosmic Ray Electron with the FERMI LAT Proc. of the 31st ICRC, Lódz C. Sgrò et al.

...

Enabling developments for space applications

SEENoTC

Space Environment and Effects Network of Technical Competencies

Goal

"reinforce the coordination of existing and planned space environments and effects related activities in Europe, through the implementation of a coherent European programme of activities in the domain."

- Roadmap on radiation analysis tools includes
 - Coordination in the development of tools for radiation effects analysis, supporting the development of infrastructure to support real-time analysis and/or forecast and ultimately ensuring that users have access to well documented and validated tools
- Usability, accuracy, speed are high priority requirements

Accuracy: Low energy ion stopping power – range

- Impact e.g. on
 - SEE ground testing of EEE components
 - Recoil ion contribution to SEE prediction
- Geant4 review (April 2007)
 - "Recommendation 2: We recommend rapid integration of the ICRU 73 heavy ion stopping power model"
- Ion physics simulation requirements (Pete Truscott, QinetiQ)
 - Performance of available Geant4 models
 - Overview of other models / data
 - Significant differences

ESA contract:

RRMC

(QinetiQ, SpaceIT, TRAD)

ICRU-73 implementation

- ICRU-73 tabulated stopping powers (PASS code results)
 - 16 incident ions 2 < Z < 19, plus Iron Z=26
 - Simple and composite materials of interest for space applications
- New Geant4 "models" (V. Ivantchenko, A. Lechner)
 - Beta version released within Geant4 release 9.2
 - Poster at IEEE NSS 2008

First comparisons

- New models also available as option in GRAS physics list
- Future areas for improvement identified
 - Straggling models
 - Effective charge approach
 - Delta ray production at low energies
- Requirements include projectiles and materials not included in ICRU-73 publication
 - Collaboration started with Peter Sigmund (author of PASS code)

ESA contract: RRMC.

100

Enabling technologies: Reverse MC

Requirement from space industry

Tallying in sub-micron SV inside macroscopic geometries

Simulation approach:

- Reverse tracking from the boundary of the sensitive region to the external source
 Based on "adjoint" transport equations
- Forward tracking trough the SV to compute the detector signal Same code than in a forward MC simulation

Computing time focused on tracks that contribute to the detector signal

Implemented Reverse Processes:

- lonisation for e⁻, protons, ions (with delta-ray production, continuous energy loss and multiple scattering)
- e Bremsstrahlung
- Gamma: Compton scattering, Photo-electric effect

Laurent Desorgher (Space IT)

Capability added to GRAS

ESA REAT-MS and RRMC contracts

Partly already included in Geant4 9.2

Reverse MC: comparison VS forward Protons, simple geometry

- Difference in total computed dose <~5%
- Reverse MC method is for this case 100-500 times more rapid than the forward MC method
- Realistic space component dosimetry involve sub-micron SV in ~1m spacecraft

Laurent Desorgher (Space IT)

Enabling technologies: CAD geometry interface (and 3D modelling GUI)

- CAD (ESA REAT-MS)
 - Using G4TessellatedSolid by P.Truscott

[Old prototype used to require ST-Viewer commercial S/W

- GDML module to read ST-Viewer files]
- New: CAD STEP interface (and normal 3D models)
 via external 3D modelling tools tools
 (ESA contract REAT-MS-2)
 Direct GDML output
- STEP for Space Environment standard (STEP-SPE)
- GDML upgrade (CERN)
 - Tetrahedron and Tessellated volumes, modular models, loops
- FASTRAD, ESABASE2
 - GUI for 3D modelling
 - GDML output
 - Licensing policy under discussion

ESA contract:

REAT-MS (QinetiQ, TRAD, eta_max)

Modèle de la station internationale sur FASTRAD **Usability:**

SSAT, MULASSIS, GEMAT, GRAS

SPENVIS interfaces

GRAS interface under development

Usability: GRAS

Requirements:

- Ready-To-Use toolMulti-missionapproach
- Quick assessments

Ray-tracing \leftrightarrow MC

 $1D \leftrightarrow 3D$

EM ↔ Hadronics

LET ↔ SV details

G Santin, V Ivantchenko et al, IEEE Trans. Nucl. Sci. 52, 2005

http://space-env.esa.int/index.php/geant4-radiation-analysis-for-space.html

* in progress

SREM Response (Proba-1)

- Directional response function for all output channels
- Geant4 / GRAS simulations

- Inner Belt Anisotropy Investigations
 - AP-8 and Badhwar-Konradi pitch angle distribution model
 - Comparison with observations onboard PROBA-1
- Martin Siegl's Master's Thesis, 2009
- Presented at RADECS 09, submitted to IEEE TNS

Herschel and Planck

Herschel and Planck

2: 14: 16: 18: 20: 22: 0: 2: 44 May First SREM data 14.5. 2009

Herschel/SREM count rates, decoded data

Planck/SREM count rates, decoded data

10000 =

1000

:0

Launch 14.5. 2009

Summary

- Wide and diverse Geant4 space users' community
- Interests ranging from cosmology, to planetary science, to spacecraft electronics engineering
- In all these domains requirements continue to emerge for new physics, improved usability, or even new technologies for Geant4-based tools

Next Geant4 Space Users' Workshop:
 Boeing Co., Seattle
 August 18th (Wed) - 20th (Fri), 2010

