

V.Ivanchenko

14th Geant4 User and Collaboration Workshop Catania (Italy) 19-23 October 2009

Introduction

- G4HadronicProcess class is a base class for hadronic processes
- Cleaned up for 9.2:
 - Removed inline constructor and destructor from base and derived classes
 - Added PreparePhysicsTable method
 - Removed unnecessary and strange methods
 - G4HadronicProcessStore and register/deregister mechanism
 - More natural sampling of isotope
 - Removed call to one environment variable
- There are still strange methods and lines of strange code
 - We are limited by our rule no change of user interface

Exceptions: status

- Currently there are 18 Exceptions inside G4HadronProcess class and 3 different implementations!
 - It seems to be too much
- G4HadronicException class is based on standard c++ try/cauch solution
- G4HadReentrentException is checked in parallel to G4HadronicException
 - Used only for kaons in LHEP and for RPG
- G4HadronicWhiteBoard is a singleton class, which keep strings – information from G4Track is used to produced strings at each call PostStepDolt and printout in the case of G4HadronicException
 - Seems to be an overhead
- In the case of hadronic exception not always clear what happens because the printout is cryptic and incomplete

Exceptions: proposal

- Remove G4HadReentrentException and G4HadronicWhiteBoard classes (at least, not use these classes)
 - all model developers provide migration to G4HadronicException
- Clean up the code removing unnecessary exception
 - The most of checks should be done at initialisation and not at run time
- In the case of an exception
 - provide printout of clear message what happens
 - use standard << operator of G4Track for detail output of primary particle
 - Always cout material, Z and A
- Proposal is easy to implement for 9.3 if we agree

G4HadronicProcess: a list of strange things (extra overhead for nothing) to be removed from PostStepDolt

- If(!ModellingState && !getenv("BypassAllSafetyChecks"))
 - ModellingState = 0,1 meanless variable
- If(result->GetStatusChange()==isAlive && thePro.GetDefinition() != aTrack.GetDefinition())
 - Against any logic
- If(getenv("HadronicDoitLogging"))
 - Use verbosityLevel instead
- G4double originalEnergy = aParticle->GetKineticEnergy();
 G4double kineticEnergy = originalEnergy;
 G4double e = aTrack.GetKineticEnergy()
- G4Nancheck to be removed
- If(isolsEnable || isolsOnAnyway)
- If(e<5*GeV)
- It is easy to implement for 9.3 if we will agree

Proposal for initialisation of models

- Add to G4HadronicModel a method BuildPhysicsTable(const G4ParticleDefinition*)
- Propagate this method to all models assigned to a given process
- Before 9.3 it can be done as an addition the change will require a coherent tags for few hadronic subdirectories
 - At the beginning an empty default implementation will be used
 - Each model author will be able to make initialisation at appropriate time
- Propose a general rule for all models to perform initialisation only inside the BuildPhysicsTable:
 - check on environment variables
 - instantiation std vectors and other objects needed for the model
 - definition of options and flags
- Introduce G4HadronicMessenger which will provide UI commands for hadronic processes/models as we use for EM physics
 - verbosity level
 - de-excitation options

Isotope production in G4HadronicProcess

- Not appropriate, because majority of models naturally produced residual isotopes
- Other models LHEP, RPG should include this mechanism or be discarded
- When is an optimal moment to remove isotope production?
 - If we decide to remove now it is very easy to do for 9.3
 - Alternatively it is possible to move this mechanism to the level of base parameterized models – more work but doable

Cross section biasing in G4HadronicProcess

- There is a mechanism of cross section biasing
- The correctness and quality are not clear
- There are questions:
 - can hadronic cross section be biased ignoring existence of EM processes?
 - Are there use-cases when current method is correct?
- Possible strategies:
 - I. For the time being keep infrastructure for cross section biasing but not activate it
 - members of the class and methods
 - Comment out PostStepDolt
 - 2. Remove all this infrastructure taking into account a fact that a proper place for the biasing is the Wrapper process
 - 3. Do nothing
- Any of this strategies easy to implement!