SImulation Studies of a Therapeutic Proton Beam Delivery System

SHIN Jungwook, KIM Dongwook, LIM Young Kyung, AHN Sunghwan, SHIN Dongho, YOON Myeong guen, PARK Sung Yong and LEE Se Byeong

Proton Therapy Center, National Cancer Center, Korea

"Development of a Monte Carlo Simulation for the proton therapy in National Cancer Center, Korea" - 13th Geant4 Workshop
a USERMACRO

D IBA UNTVERSAL NOZFLE \quad OVERVIEW

IBA Proteus235 System

General purpose packages

ex) \$./proteusMC --tr=\{FBTR |GTR2 | GTR3\} --mode=\{passive| us | pbs\} --io=\{*.root | *.gdd\} *.mac

/BTS/beam/particle proton
 /BTS/beam/energy L cm 20.08

Range to M.C Energy conversion required!
i.e) $\mathrm{E}=$ R2Energy(20.08)

BTS ~"Beam Transport System"
\#the set-up to be set before initialization /GTR2/SNT/type 250
/GTR2/SNT/aperture/rectangle open /GTR2/SNT/aperture/rectangle Lx Ly Ox Oy \#Geant4 kernel initialize
/run/initialize
/GTR2/FS/Iollipops 25
/GTR2/SS/select 2
/GTR2/RM/track 5
/GTR2/VC/setVxVy cm 15.615 .7
for case, - -tr=FBTR,""GTR2/ \rightarrow / /FBTR/"
/TCS/passive/bcm TR2_B4_1 1411000
/TCS/StartIrradiation
TCS ~"Treatment Control System"
TR2_B4_I ~ Beam current pattern
14I ~Stop digit
1000 ~ baseline of incident particle

equivalent

```
/TCS/passive/bcm TR2_B4_1 141 1000
/TCS/StartIrradiation
```

TR2_B4_1 : one of beam current modulation prepared by manufacturer
141: stop digit, determines the width of SOBP 1000: base number of particles

Range modulator rotates and produce Bragg Peaks ..
\#start simulation
...
/GTR2/RM/angle deg 30.0
/run/beamOn 960
/GTR2/RM/angle deg 30.5
/run/beamOn 950
/GTR2/RM/angle deg 31.0
/run/beamOn 930
/GTR2/RM/angle deg 31.5
/run/beamOn 935
... (more than 100 lines up to stop-digit)
\# end of simulation
\% The sequence number (seqNo) : a moment on time-sequence $<=>$ the copy number of G4PVParameterisation : an identifier as a part of geometrical structure.

The VSeqentialRunParameterisation class was devised to

- generate a look-up table having dynamical information of constituent as function of time-sequence
- provide the Geant4 kernel with interfaces to change the conditions by referring the look-up table

The pure virtual methods of VSequentialRunParameterisation

GenerateLUT()
GetLUTSize()
GetNumberOfParticles(G4int seqNo) ComputeNozzle(G4int seqNo) ComputeBeam(G4int seqNo) ComputePhantom(G4int seqNo)
generates Look-Up table returns the size of Look-Up table
returns number of particles per individual simulation
changes nozzle set-up
changes beam condition
change target phantom set-up

- BEAMENERCY

DSEOUENTHAL RUN (2/3) - SOBP RIESULTS

The StartSequentialRun() method was added to G4RunManager to automatically 1. invoke ComputeXXX methods defined in user class of VSequentialRunParameterisation 2. perform individual simulations by referring number of participant particles until Look-up table being empty

```
G4int start_lut \(=0\);
G4int stop_lut =_LUT->GetLUTSize();
for(G4int \(\boldsymbol{i = s t a r t \_ l u t ; ~} i<\) stop_lut \(\left.;++i\right)\{\)
    _LUT->ComputeNozzle(i);
    _LUT->ComputeBeam(i);
    _LUT->ComputePhantom(i);
    ...
    this->BeamOn(_LUT->GetNumberOfParticles(i));
\}
```

Because SequentialRunManager is independent (no needs of re-writing) of user application, Internally generating look-up table for specific application is our key approach.

```
#start simulation
```

/GTR2/RM/angle deg 31.0 /run/beamOn 930
/GTR2/RM/angle deg 31.5 /run/beamOn 935 ... (more than 100 lines) \# end of simulation
/GTR2/RM/angle deg 30.0 /run/beamOn 960
/GTR2/RM/angle deg 30.5 /run/beamOn 950
\#start simulation
.-
look-up table for passive scattering (number of particles per each individual run)

seqNo	\# particles
0	960
1	950
2	930
3	935
\ldots.	
143	900

/TCS/passive/BCM TR2_B6_1 1441000 /TCS/StartIrradiation

replaced by

TCS/StartIrradiation

TR2_B6_1 : one of beam current modulation prepared by manufacturer
144: stop digit. it presents width of SOBP
1000: base number of particles

TR2_B6_1 : one of beam current modulation
prepared by manufacturer
144: stop digit. it presents width of SOBP
1000: base number of particles

- BEAMENERCY

DSCINHILLATOR (I/4)\& INHRODUCTION

FINDING NEUTRON

The accurate simulation study can help to design and construct a dosimetry device utilizing the BC408 scintillator.
we have simulated ...

- optical photon emission spectrum
- total light output vs proton energy

QSOINHILLATOR (2/4) E MAUERIAL PROPERTHIES I FINDING NEUTRON

BC408 input parameters for G4Scintillation process		
Basic infomation G4Material	Chemical name	Polyvinyl Toluene \& Organic Flours
	Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{11}$ or $\mathrm{H}: \mathrm{C}$ atoms $=1.104$
	Density	$1.032 \mathrm{~g} / \mathrm{cm}^{3}$
Additional Properties G4MaterialPropertiesTable	R Index	1.58
	Light Yield Factor	

DSCINHILLATOR (3/4): OUENCHING EFFETT

- FINDING NEUTRON

Quenching effect has not been implemented and then we added quenching formula G4Scintillation.hh/cc.

dN : \# of generated optical photons per a step
ε : Conversion efficiency.
G4MaterialPropertiesTable::GetConstProperty("SCINTILATIONYIELD")
dL : Transfered energy to be converted into optical photon.
aStep.GetTotalEnergyDeposit()
kB: Quenching factor.
G4MaterialPropertiesTable::GetConstProperty("QUENCHINGFACTOR")
ρ : Material density . G4Material::GetDensity()
$d E / d X$: stopping power, G4EnergyLossTable::GetDEDX()

DSCINTHLLATOR (3/4): 2D DOSE DISTRIBUTION HINDING NEUTRON

scoring grid : 2mm in X, Y and 1 mm thickness

Secondary neutrons are produced during proton treatment by nuclear interaction with the materials on the beam path, including the patient's body.
We simulated to investigate

- where did neutron come from ?
- how we can reduce the neutron?

Q FINDING NEUTRON (2/4): NEUTRON GENERATION

hits in water phantom vs part ID \& depth

Water phantom (27\%)
Eye snout (42\%)

\% SWX207HD5: high hydrogen-boron contaminated material

neutron from sub part	Single Brass block	Brass + SWX
Front of the Snout	0.13%	0.12%
snout	0.38%	0.24%
Brass Block	0.93%	0.43%
Phantom	0.31%	0.28%

\#of neutron / \# of total primary hits water phantom

Our challenge is to repeat our simulations with Geant4.9.x (currently, we are using 8.2.p02)

