

Skin Dosimetry in MRIgRT (MRI-guided-Radiotherapy)

Bradley Oborn
PhD Candidate
Centre for Medical
Radiation Physics (CMRP)
University of Wollongong, Australia

Introduction

- MRI-guided-Radiotherapy (MRIgRT) is an experimental stage modality.
- Shows great promise for healthy tissue sparing and dose escalation to tumours - treatment delivered to MR quality images!
- Downsides:
 - Complex machines
 - Over/underdosing at boundaries
 - Skin dose increases
 - Complex treatment planning
- Most likely arrangement:
 - 6 MV Linac + transverse magnetic field
 - -0.2 1.5 T range
- Two working prototypes: Raaymakers et al¹, and Fallone et al².
- Quote from Talking Point (medicalphysicsweb.org, 23 Jul 2008, Kevin Brown, Elekta's Research Director) on the next big developments in radiotherapy:
 - "VMATand the use of MR imaging during radiation therapy."

MRI

Working Prototypes 1

- Raaymakers et al, (Netherlands),
- 1.5 T "Fixed Cylindrical" (FC)
- B-field [⊥] to beam Central Axis (CAX)

Working Prototypes 2

- Fallone et al, (Canada)
- 0.2 T "Rotating Bi-Planar" (RBP)
- B-field [⊥] to beam CAX

Left: MR axial image without 6 MV linac irradiation Right:MR axial image during 6 MV irradiation of object imaged. Linac is without flattening filter and radiation was monitored during imaging.

Aims

- Using Geant4 predict the ICRP 60 recommended 70 micron depth skin dose values in MRIgRT with focus on:
 - 6 MV transverse field system
 - effect of surface angle orientation
 - 0.2 3 T range systems

ICRP Publication 59:

Epidermal effects: 20-100 µm

Dermal effects: 300-500 μm

ICRP Publication 60:

Skin dose: 70 µm

Geant4 Simulations

- Medical Linac (Varian 2100C 6MV) + Uniform Magnetic Field.
 - Geant4.9.2
 - PhysicsLists: Low Energy Electromagnetic (standard).
 - 4th order Runge-Kutta for B-field transport (standard)
 - Phantoms:
 - 30x30x20 cm³ water phantom (perpendicular beams)
 - Modified 30x30x20 cm³ water phantom (non-perpendicular beams)
 - 1 cm thick Exit Bolus simulations are performed.
 - Linac head simulated to make phase space files (20 cm above phantom).
 - B-field extent is 80x80x70 cm³ (25 cm buffer in all directions).
 - Step and Cuts values are 5 um in scoring volumes, 0.2 mm otherwise.

Geant4 Simulations – High resolution scoring

CAX voxels:

- 10x10x0.01 mm³ in size
- 2000 in entry region, 2000 in exit region
- Used to generate CAX PDD curves

Entry and Exit "Virtual" Films:

- 10 μm thick layer between 65 and 75 μm depth
- Entire exit face is covered
- 1x1x0.01 mm³ resolution

Theory: The Electron Return Effect (ERE)

- Every electron that exits the phantom (any surface) will be forced to return.
- The ERE is mostly responsible for skin dose changes.
- The ERE changes with surface angle.

2 MeV pencil e-beam starting at surface

10x10 cm 6MV beam exit side

ERE for perpendicular beams

Entry region:

- Lepton contamination purged and minor ERE
- Skin dose reductions until B-field becomes strong enough that secondary electrons are stopped in very short distances.

Exit region:

- ERE at all B-fields.
- Shifting of skin dose maximum away from CAX.
- Skin dose increases.

Entry surface ERE for non-perpendicular beams

- -ve angles: minimal ERE
- +ve angles: increased ERE
- Consider 10 x 2 MeV secondary electrons starting at the surface (3 T):
 - -ve angles: electrons encouraged to travel deep
 - +ve angles: electrons undergo ERE and barely travel below 1 mm depth → massive skin dose increase

Exit surface ERE for non-perpendicular beams

- -ve angles:
 - Increases ERE and lateral/transverse spreading
 - Electrons travel further (more lateral spread)
 - Increased skin dose
- +ve angles:
 - Decreased ERE
 - Electrons travel less (less lateral spread)
 - Decreased skin dose

Results: Entry Side CAX

CAX profiles (0-deg):

- Minor reductions seen except at 3 T.
 (due to lepton purging)
- D_{max} shifts to 5 mm at 3 T.

CAX vs angle (70 um):

- Large increases seen at +ve angles
- Mild increases at -ve angles (greatest however for 0.2 T – opposite to +ve angles...)

Results: Entry Side Films

- 70 micron depth "virtual" films (3 T):
 - Uniform dose across surface.
 - Generally, large increases at large +ve angles.
 - 5x5 cm² field shown.
 - Results still noisy (±4%) some 2D smoothing applied.

Results: Exit Side CAX

CAX profiles (0-deg):

- Large increases due to the ERE.
- The increases are not directly related to B-field: ERE shift = 3-D problem.

CAX vs angle:

- Large increases due to the ERE
- Exit bolus very useful

Results: Exit Side Films

- 70 micron depth "virtual" films (0.2 T):
 - 5x5 cm² field shown.
 - Results still noisy (±4%) some 2D smoothing applied.
 - Increases in surface area receiving low dose (< 20% of D_{max}) due to the lateral/ transverse spread.
 - Exit bolus (WB) prevents this low dose increase.

Conclusions

- Excess skin dose in MRIgRT is a real concern:
 - _ "Hot spots" expected.
 - Increased area of skin exposed to low doses.
 - Entry/Exit surface angles important.
 - Exit bolus may significantly lower exit skin dose.
 - _ IMRT treatments will help lower skin dose.
- Geant4 very powerful tool for this application:
 - B-fields: YES
 - High resolution scoring: YES
- Due to the complex nature of the ERE high resolution MC simulations may be the best method to characterize/study skin dose in MRIgRT → Geant4.
- Future Work:
 - Continue characterization of skin dose in MRIgRT for more realistic cases like IMRT, CT dataset phantoms.

References

- 1 Raaymakers et al, Phys., Med. Biol., (54) 2009, N229-237.
- 2 Fallone et al, Med. Phys., 35(3), 2008, p1019-1027.
- 3 Oborn et al, Med. Phys., 36(8), 2009, p3549-3559.

University of Wollongong (CMRP)

Mt Keira (Extinct Volcano)

Mt Etna

Catania