Geant4 Applications for Astroparticle and Rare-Event Physics

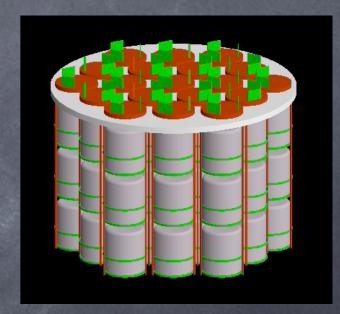
Markus Horn Imperial College London

H. Araujo – Imperial College London L. Pandola – INFN Gran Sasso

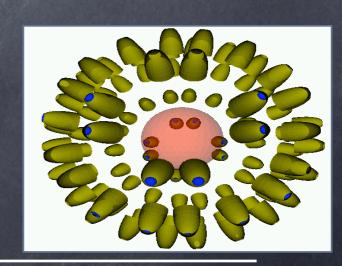
14th Geant4 Users and Collaboration Workshop, Laboratori Nazionali del Sud – INFN, Catania (Italy) 15–22 October 2009


> Imperial College London

Outline

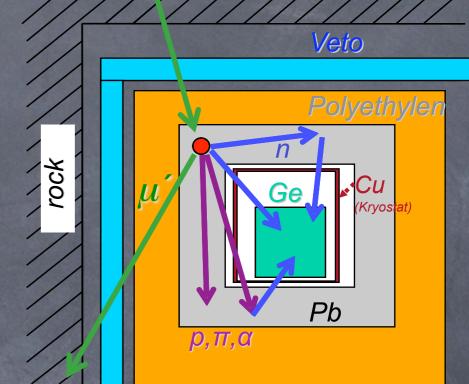

- Geant4 in the Astroparticle and Rare-Event physics community
- Critical issues for underground experiments
 - Muon-induced neutrons
 - Low-energy neutron propagation
 - \circ Radioactivity (decays, small BR, (α ,n), etc.)
 - Very-low-energy electromagnetic interactions
- Updates on requirements

Astroparticle & Rare-event physics


- Direct Dark Matter detection experiments
 - ArDM, (Super-)CDMS, CRESST, DRIFT, EDELWEISS, EURECA, LUX, WARP, XENON, ZEPLIN, etc. (no claim to be complete)

- Neutrinoless double-β decay experiments
 - © COBRA, CUORE, GERDA, MAJORANA, etc.

- Solar neutrinos
 - Borexino, KamLAND, etc.



Geant4 applications

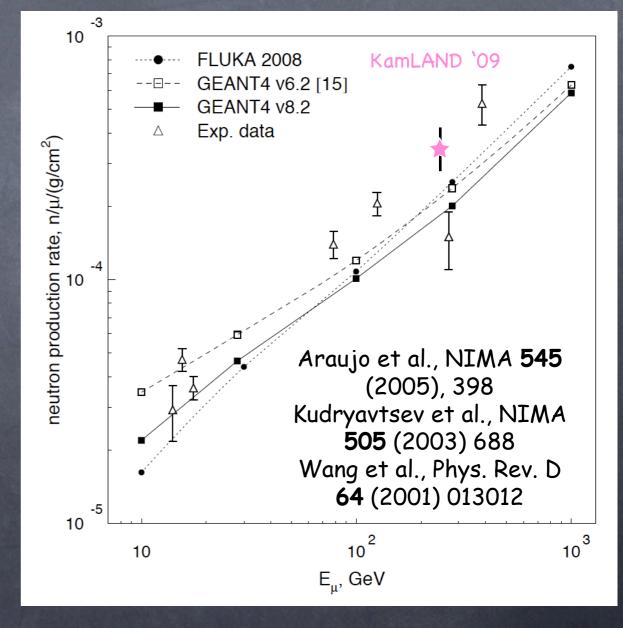
- Backgrounds of the experiment
 - internal radioactivity
 - external radioactivity (rock, shielding, etc.)
 - neutron production induced by cosmic muons
 - efficiency of veto systems
- Detector response
 - scintillation, ionisation
 - optics, e.g. photon generation, light collection
- Calibration
 - neutrons and gammas
- Simulated data
 - visualisation, run-time analysis, input to data analysis, etc.

Muon induced neutrons

- Muon induced neutrons
 - HE cosmic ray muons (>200GeV) inducing neutrons in surrounding rock or shielding material

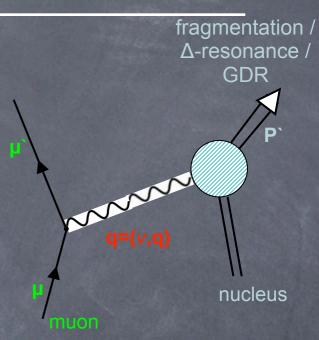
- critical for ALL underground experiments
- very important for ton-scale next-generation experiments (Dark Matter, 0ν2β, etc.)
- assessment of new and ongoing multi-experiment underground facilities

Muon induced neutrons (cont. I)


Differences between Geant4, FLUKA, MUSIC to experimental data remain

see Boulby/Zeplin-II report (arXiv:0810.1682)

yield in Pb seems lower than Geant4/FLUKA


New data from KamLAND (arXiv:0907.066)

→ see talk I.Shimizu

Muon induced neutrons (cont. II)

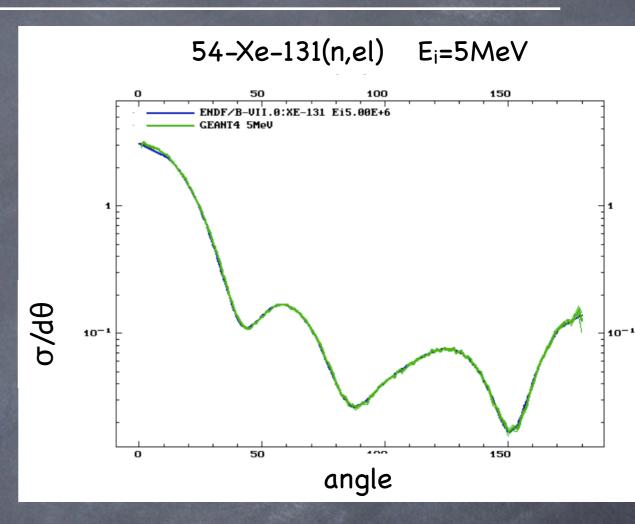
- Continue development & validation of muon-nucleus interaction models
 - QCollision and QCaptureAtRest
 - ✓ changes for large nuclear excitation in Q models
 - ✓ improvement to fragmentation > 10GeV
 - Validate inelastic cross-sections
 - Validate underground muon spectra, depth intensity relations, etc.
- Dedicated neutron yield test for each release
 - Disseminate validation results, e.g. neutron yield increased by 20% from Geant4 9.0 to 9.2
- Hadron and Ion cascade models,
 e.g. CHIPS-based models, BiC, Bertini, etc.

Pb/C_nH_{2n}

Neutron propagation

- Precise tracking of fast (~MeV) neutrons down to thermal energies very important
- Geant4:

Data-driven approach of NeutronHP models, databases for elastic & inelastic scattering, capture and fission


- currently ENDF/B-VI, FENDL, JENDL, etc.
- update to ENDF/B-VII (elastic only)
- translation to LLNL-ENDL database ongoing

Neutron propagation (cont. I)

- Energy and momentum conservation (eventby-event) in NeutronHPInelastic
 - ✓ significant improvements been made, 2-body
 - ✓ 3+-body improved, but not solved (yet)
 - missing residual nucleus, e.g. Ge(n,2n)
 - \checkmark missing y's in some channels, e.g. (n, α), (n,p)
 - Separation (n,n'y) to (n,n')+y remain difficult
 - Angular distribution of recoiling nucleus (n,n'y) might be relevant for DM applications

Neutron propagation (cont. II)

- Neutron HP database and documentation
 - ✓ ENDF/B-VII.0 elastic cross-sections implemented

- o inelastic, capture, fission under development
- Independent database tool available, though needs more materials (only Ar/Xe patches yet)

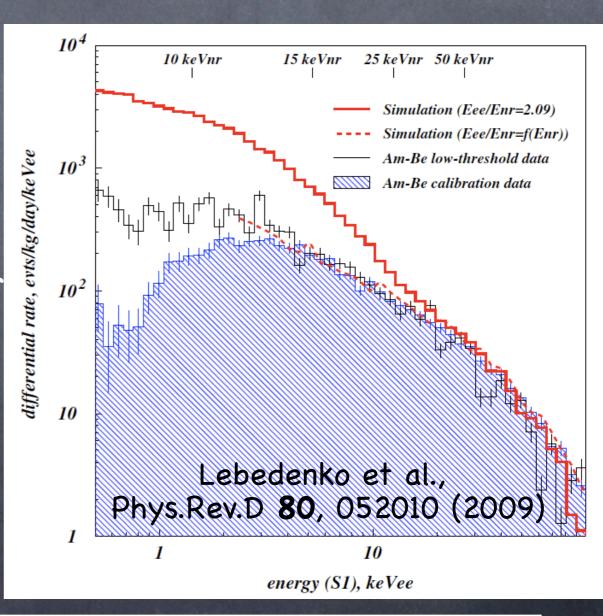
Radioactivity

- Radioactive decay module needs to be very precise,
 - ✓ atomic de-excitation bugs fixed/patched
 - → see bug report #1001
 - o no local energy deposit handled
 - no Auger-electron data loaded for non-detector elements
 - some missing X-rays bugs remain, e.g. I-129

Radioactivity (cont. I)

- Small BR decay possibilities (<10-8)</p>
 - database needs maintenance and update
- Event generator, non-trivial sources (e.g. 2ν2β)
- Shape of β-spectra for forbidden transitions
- Isotope production
- Metastable states, e.g. Ge-77m, Kr-83m, etc.
 - strong requirement to generate metastable states in radioactive decays and cosmic ray activation

Radioactivity (cont. II)


- (α,n) reactions are the main production mechanism for neutrons in most experiments (background, calibration, etc.)
 - mainly using SOURCES 4A/4C code by LANL
 - data-driven (HP-type) model would be preferred
 - LLNL database? → Problems with licenses
- (angular correlation in gamma cascades)

Very-low-energy electromagnetics

- Precise description of electromagnetic processes of leptons and hadrons down to very low energies is crucial to ALL low background experiments
 - proton/α-particle/nucleus EM processes
 - \circ high spatial precision for α -particles needed
 - \odot simulations of fluorescence X-rays, e.g. in 0v2 β and γ spectroscopy
- Models are continuously tested, maintained and validated, new ones developed

VLE electromagnetics (cont. I)

- Nuclear quenching factor
 important for ALL DM searches
 QF = E_{nuc}/E_{elec} (ionisation, scintillation, etc.)
- discrepancy between simulation and data
 - either efficiency loss, or
 - non-linear quenching factor
 - → new measurement LUX/McKinsey (Yale)
- Importance of precise VLE simulations

Conclusions

- Geant4 widely used within our community
- Physics models required cover wide range (from TeV-muons to thermal neutrons)
- Geant4 support/response to community requirements is very well - Thank you!

→ see also
Parallel Session IV Underground
16:30 - 18:30