
Progress Report Toward a Thread-Parallel Geant4

Gene Cooperman and Xin Dong
High Performance Computing Lab

College of Computer and Information Science
Northeastern University

Boston, Massachusetts 02115
USA

{gene,xindong}@ccs.neu.edu

Multithreaded Geant4 (Geant4MT)

• Master/Worker paradigm

• Event-level parallelism to simulate separate events by multiple threads

• For each event, there is a corresponding seed for CLHEP random number
generator

• Seeds come from a sequence of random numbers on master

• Reproducibility: Given same initial random seed, Geant4MT produces
same result.

• Efficiency for future many-core CPUs

• Testing and validation on today’s 4-, 8- and 16-core nodes

• Preliminary results available based on testing onfullCMS bench1.g4

Current Results

fullCMS bench1.g4 (electromagnetics), 1 master and 3 worker threads:

1. Phase I: multi-threaded implementation; code sharing (same asmultiple processes), but
no data sharing
(600 MB:≈ 30 MB text/code + 4× 140 MB)

2. Phase II: Sharing of geometry, materials, particles, productioncuts, EM physics tables
(400 MB:≈ 30 MB text/code + 80 MB shared geom. + 70 MB electromagnetics physics
tables + 4× 22 MB)

3. Phase III: Performance Analysis&Adjustment(Ongoing)

4. Phase IV: Other physics processes(Considering)

5. Phase V: General Software Schema: new releases of sequential Geant4 drive
corresponding multi-threaded releases(TODO)

Phase IV: easy in principle, since physics tables are read-only, aside from small caches:
Difficulty is that each physics table may have a distinct author using a distinct API

Multi-Processing: Forked Processes and Copy-On-Write

The UNIX fork system call uses copy-on-write semantics (COW) to create a child process
that shares all data with the parentuntil the parent or child writes to a particular page. This
provides easy sharing of those data pages that are accessedonly in read-only modeby parent
and child.

A Copy-On-Write version of Geant4 has been written. Its uses are two-fold:

1. Reference version:to compare Multi-Threaded Geant4 with best alternative technology.

2. Easy Data Sharing:few assumptions, less dependency on specific Geant4 source code.

Issues:

• Coarser granularity:If even one field of a C++ object is read-write, then the entire data
page containing the object is not shared.
Good news: The technique from Geant4 multithreading helps to solve this problem!

• When to fork:Geant4 initialization of different components happen prior tothe first
event. We chose to forkafter the detector construction, which captures most of the
initializations.

Geant4MT Methodology

• Patch parser.c of gcc to output static and global declarations in Geant4
source code; recompile and reinstall gcc

• Build Geant4 and collect output of parser.c (similar to UNIX grep)

1. static variables in each function

2. static class members

3. global variables and if they exist, all corresponding “extern” declara-
tions

• Transform the Geant4 source code using the “thread” keyword

• Choose sharable classes and detect read-write data members

• Sharable class transformation: separate read-write data members and
make them thread private.

1. By detaching read-write data members, large read-only memory
chunks are formed

2. Copy-On-Write does not replicate those read-only chunks

Comparison of Different Parallel Approaches

• Separate Processes

Requires the memory is sufficient and fast since no reductionfor the
memory footprint

• Copy-On-Write Using the Original Geant4

May reduce the memory footprint on some special cases
As an example, geometry is not replicated among all processes if no
replica or parameterized volume is used.

• Geant4MT (Multithreaded Geant4): Process + Thread Parallel Geant4

Guarantee to reduce the memory footprint greatly
Adjust memory allocations& frees and scale to 16 threads on aDell AMD
16-core of 2.0GHz.

• Copy-On-Write Using Geant4MT

Apply the Geant4MT phaseII change only and reduce the memory
footprint
Unlimited scalability when the aggregation for results is not an issue.

Experimental Results For Different Approaches

Using the Dunnington machine to test onfullCMS bench1.g4 with 24
workers and 4000 events per worker (electromagnetics).

Implementation Total Memory Additional Total Memory Runtime
on master Memory (master

per Worker + 24 workers)
Separate Processes 250 MB 250 MB 6 GB 4575 s
Original Geant4 + COW 250 MB 70 MB 2G MB 4571 s
Geant4MT + COW 250 MB 20 MB 730 MB 4540 s
Geant4MT 250 MB 20 MB 730 MB 5798 s
4 processes× 6 threads

If the memory and its bandwidth are sufficient, the multiprocesses are still
powerful.

Current Work on Performance Analysis&Adjustment

Performance: Bottleneck (April 2009)

No more than 7 times speed-up on Dunnington

24 Intel 2.8G core 1 2 4 8 12 16 18 24
Time [s] 500 evts,5232 2902 1689 1088 926 871 830 810
pi-, 300GeV
Speed-up 1 1.8 3.1 4.8 5.7 6.0 6.3 6.5

Increasing number of system calls

24 Intel 24 processes× 4 processes× 2 processes× 1 process×
2.8G core 1 thread 6 threads 12 threads 24 threads
Sys call Number Time Number Time Number Time Number Time
mmap 48 0.00 48 0.00 55 0.01 72 0.01
futex 12K 0.12 19M 225.64 55M 1068.22
madvise 1837 0.05 2172 0.08 2310 0.12
brk 19 0.00 101 0.00
munmap 9 0.00 38 0.00
...

Performance: Sources for Futexes

• The result from counting the output of strace shows two addresses that
issue most of futexes for the 2 processes× 12 threads case:
Address Number Time
32558ded3e 6814549 85.9533490007106
32558ded6f 13147364 139.155402001531

• Backtracing breakpoints *0x32558ded3e and *0x32558ded6fin GDB,
we see the following:

#0 0x00000032558ded3e inlll lock wait private (from /lib64/libc.so.6
#1 0x0000003255876944 inL lock 15349 () from /lib64/libc.so.6
#2 0x0000003255875901 inlibc free (mem=<value optimized out>)
at malloc.c:3589
#3 0x0000000000b83334 in G4TouchableHistory::∼G4TouchableHistory()
...

Performance: Sources for Futexes (Continue)

• More output

#0 0x00000032558ded6f in lll unlock wakeprivate () from
/lib64/libc.so.6
#1 0x000000325587695f inL unlock 15366 () from /lib64/libc.so.6
#2 0x0000003255875928 inlibc free (mem=<value optimized out>)
at malloc.c:3592
#3 0x0000000000b83334 in G4TouchableHistory::∼G4TouchableHistory()
#0 0x00000032558ded6f in lll unlock wakeprivate () from
/lib64/libc.so.6
#1 0x00000032558764c6 inL unlock 11790 () from /lib64/libc.so.6
#2 0x000000325587404e in libc malloc (bytes=<value optimized
out>) at malloc.c:3538
#3 0x00002ac4f5501a6d in operator new (sz=1008) at ../../../../libstdc++-
v3/libsupc++/newop.cc:57
#4 0x00002ac4f5501ba9 in operator new[] (sz=46913458012192) at
../../../../libstdc++-v3/libsupc++/newopv.cc:37
#5 0x0000000000c7a220 in G4AllocatorPool::Grow()

Performance: The Most Mallocs&Frees

• Using GDB scripts to output the backtracing information forall
libc malloc and libc free occurrences

• Counting the number of mallocs/ frees for different locations of Geant4
code and figure out the most intensive one

• From 100000 times of mallocs or frees, there are

free; G4SteppingManager::Stepping; 0xa17792 [14084]
free; G4TouchableHistory::∼G4TouchableHistory; 0xb83294 [14524]
malloc; G4Transportation::PostStepDoIt; 0x9987a2 [15611]
malloc; G4NavigationHistory::G4NavigationHistory; 0xb778e5 [15634]

• From 1000000 times of mallocs or frees, there are

free; G4SteppingManager::Stepping; 0xa17792 [171418]
free; G4TouchableHistory::∼G4TouchableHistory; 0xb83294 [185433]
malloc; G4Transportation::PostStepDoIt; 0x9987a2 [186017]
malloc; G4NavigationHistory::G4NavigationHistory; 0xb778e5
[186042]

Performance: Mallocs&Frees Reduction

• G4TouchableHistory

Override the “new” and the “delete” method such as:

1. hold a set of thread-private instances with a flag to show the instances
is “used” or “unused”;

2. malloc 512 instances whenever there is no more unused instance;

3. the “new” method: seach an unused instance and change the flag to be
“used” before return the address of the instance;

4. the “delete” method: only change the flag to be “unused” forthe freed
instance;

• G4NavigationHistory

Change “vector<G4NavigationLevel> fNavHistory;” to

“vector< G4NavigationLevel, MyAllocator< G4NavigationLevel> >

fNavHistory;” where “MyAllocator” implements the same mechanism
as mentioned above

Performance: More Mallocs&Frees Reduction

From 822366 times mallocs and frees, there are following mallocs and frees:

• free; ∼G4QCandidate; DeleteQCandidate::operator();
std::for each< gnu cxx:: normal iterator<G4QCandidate**,;
G4Quasmon::ClearQuasmon; 0x6998f1 [46361]

• malloc; operator; G4QNucleus::InitCandidateVector; 0x6c7c73 [53415]

• malloc; operator; G4QNucleus::InitCandidateVector; 0x6c7e1c [73594]

• malloc; operator; G4QNucleus::InitCandidateVector; 0x6c7d28 [85464]

• free; ∼G4QCandidate; G4QNucleus::InitCandidateVector; 0x6c7c31
[165973]

Performance After Mallocs&Frees Reduction

24 Intel 24 processes× 4 processes× 2 processes× 1 process×
2.8G core 1 thread 6 threads 12 threads 24 threads
Time W-CLK Sys W-CLK Sys W-CLK Sys W-CLK Sys
Worker 1 214.4 0.04 244.8 0.3 336.3 1.4 400 4.6
Worker 2 225.7 0.05 250.2 0.3 335.7 1.4 405.2 4.7
Worker 3 239.4 0.05 268.1 0.3 355.3 1.6 429.4 4.7
Worker 4 222.9 0.05 248.5 0.3 337 1.5 408.5 4.7
Worker 5 237.1 0.05 267.8 0.3 361.5 1.6 428.4 4.5
Worker 6 221.9 0.04 249.3 0.3 338.8 1.4 404.1 4.4
Worker 7 229.3 0.04 256.1 0.3 352 1.5 410 4.7
...
Worker 24 236.4 0.04 268 0.3 354 1.5 425.7 4.4
Average 228.15 0.04 254.82 0.33 343.48 1.43 413.23 4.47
× #Processes 5475.7 1019.27 686.96 413.23
× #Threads 0.04 1.98 17.1 107.3
Speed-up 5.37 7.97 13.25

Performance: On a Cheaper Hardware

16 AMD 16 processes× 4 processes× 2 processes× 1 process×
2G core 1 thread 4 threads 8 threads 16 threads
Time W-CLK Sys W-CLK Sys W-CLK Sys W-CLK Sys
Worker 1 494.3 0.18 512.7 0.9 521.3 1.6 571.7 3.9
Worker 2 480.3 0.15 492.4 0.9 513.1 1.7 558.2 3.7
Worker 3 520.1 0.11 547 0.8 555.9 1.7 597.5 3.6
Worker 4 462.8 0.22 470.4 1 482.6 1.8 531.6 3.8
Worker 5 483.1 0.18 492.2 0.9 485.8 1.9 550.2 3.9
...
Worker 16 491.9 0.18 501.1 0.7 513.1 1.7 551.9 3.6
Average 500.62 0.19 516.72 0.84 527.48 1.72 573.14 3.75
×#Processes 8009.9 2066.88 1054.95 573.14
×#Threads 0.19 3.38 13.75 60
Speed-up 3.88 7.59 13.98

The two steps of Mallocs&Frees reduction greatly improves the scalability.

There are still a huge number of mallocs&frees left.

Performance: Corresponding Sys-Call Statistics

24 Intel 24 processes× 4 processes× 2 processes× 1 process×
2.8G core 1 thread 6 threads 12 threads 24 threads
Sys call Number Time Number Time Number Time Number Time
mmap 48 0.000 48 0.001 49 0.002 53 0.007
mprotect 17829 0.235 15309 0.351 14912 0.622
futex 192 0.002 34793 0.464 59359 1.036
madvise 1787 0.055 1923 0.095 1980 0.119
brk 27 0.001 113 0.005
munmap 2 0.000 5 0.001

16 AMD 16 processes× 4 processes× 2 processes× 1 process×
2G core 1 thread 4 threads 8 threads 16 threads
Sys call Number Time Number Time Number Time Number Time
mmap 32 0.001 32 0.002 32 0.002 32 0.008
mprotect 11384 0.283 12457 0.344 9341 0.81
futex 122 0.002 852 0.013 18912 1.438
madvise 1595 0.086 1922 0.108 1986 0.114
brk 1011 0.020 215 0.005 99 0.002 99 0.011

Questions?

Which Method is Best?

• Geant4MT achieves linear speedup through 6 threads on 2.88 GHzIntel
Xeon with 24 cores:4× 6-core CPUs, plus L3 cache

• Geant4MT achieves linear speedup through 16 threads on cheaper
2.0 GHz AMD Opteron with 16 cores:4 times 4-core CPUs with no
L3 cache

• Geant4MT plus copy-on-writealwaysachieves linear speedup in every
experiment.

• Geant4MT plus copy-on-write uses more memory.

• Conclusion:Use Geant4MT with maximum number of threads achieving
linear speedup. Add copy-on-write to occupy all cores.

1. Example:24 Xeon cores: 4×6 (four Geant4MT processes employing
copy-on-write; each process having 6 threads)

2. Example: 16 Opteron cores: 1× 16 (a single Geant4MT process
having 16 threads; no copy-on-write needed)

Automatically transform Geant4

• Follow the “change list”

• Transform the original Geant4 to be thread-safe

• Example for a static variable that is not a class member

BEFORE:

static G4FieldTrack endTrack(’0’);

AFTER:

static thread G4FieldTrack *endTrackNEW PTR = 0 ;

if (! endTrackNEW PTR)

endTrackNEW PTR = new G4FieldTrack (’0’) ;

G4FieldTrack &endTrack = *endTrackNEW PTR ;

Automatically transform Geant4 (cont.)

• Example for a static class member

BEFORE:

static G4String dirName;

AFTER:

static thread G4String dirNameNEW PTR ;

BEFORE:

G4String G4NuclearLevelStore::dirName(””);

AFTER:

thread G4String G4NuclearLevelStore::dirNameNEW PTR = 0;

G4NuclearLevelStore* G4NuclearLevelStore::GetInstance()

{if (! dirName NEW PTR)

dirNameNEW PTR = new G4String(””) ;

G4String &dirName = * dirNameNEW PTR ;

· · · }

Sharable Class Transformation

Redefine the references for read-write data members

class G4PVReplica : public G4VPhysicalVolume
{

int g4PVReplicaObjectOrder;
static G4PVReplicaPrivateObjectManager g4PVReplicaPrivateObjectManager;
...
// G4int fcopyNoG4PVReplica;
...

}

#define fcopyNoG4PVReplica
((g4PReplicaPrivateObjectManager.offset[g4PVReplicaObjectOrder]).fcopyNo)

Sharable Class Transformation Continue

Implement the array for all thread-private data members

class ReplicaPrivateObject
{
public:

G4int fcopyNo;
};

class G4PVReplicaPrivateObjectManager
{
public:

ReplicaPrivateObject* privateDataArray;
int MasterAddNew()...
void WorkerInitialization()...
void WorkerFree()...

}

