presented by Krzysztof Genser
for Fermilab Geants4 performance group
14™" Geants4 Workshop, October 2009

On improving Geanty
performance, robustness and
easing code maintenance




Members of Fermilab Geants (Gg)

Performance Group




Talk Outline




Past year’s activities




Profiling/Tools Used




More on past year’s activities




Suggestions/Reminders

regarding C++ Coding
Techniques/Style




Suggestions/Reminders regarding
C++ coding Techniques/Style

= Remarks inspired by and generalized from the
reviewed G4 code

= many of us came to C++ from other languages or
learned C++ when it was in its early deployment years

= the remarks below are partially a result of the
evolution of C++ and coding techniques

= Coding techniques can impact not only
performance but also the effort needed to read
the code and therefore the cost required to
maintain it

G4 Workshop, October 2009 On improving Geants performance, robustness and easing code maintenance



Main Suggestions




Objects’ State and basic behavior

= Make sure to completely construct/initialize and
copy objects

one should be able to “reason about the code”, i.e.
constructors and assignment operators should
behave in the way most programmers would expect

one should be able to use the objects with C++StdLib
containers and algorithms which do have certain
requirements (see e.g., N.M.Josuttis, "The C++
Standard Library”):

public, “faithful” copy constructor & assignment operators
and public, nonthrowing destructor;

some containers and algorithms may also require default (no
argument) constructor, equality ("==") operator, "<" operator

G4 Workshop, October 2009 On improving Geants performance, robustness and easing code maintenance

10



More on construction and copying




Copy constructors and assignment
operators

= Do not define/declare copy
constructor/assignment operators when not
needed (e.qg., for objects with no pointer data
members or no data members at all) letting
compiler generate them

= In cases where the compiler-generated
constructors/assignment operators would not be
adequate, follow the prescription shown ine.q.,
H. Sutter "Exceptional C++"” using copy-and-
swap as the implementation technique of the
assignment operator

G4 Workshop, October 2009 On improving Geants performance, robustness and easing code maintenance

12



Pointers == Implementation Detalils




Containers and Pointer Use




Smart vs. Native Pointers




More on Standard Library

Containers/Algorithms




Functors (function objects) and

Standard Library




Functors (function objects) and

Standard Library cont’d




Functors (function objects) and

Standard Library cont’d




Functors (function objects) and

Standard Library cont’d




Class Invariants and
Debugging/Testing







Keyword explicit




Automatic vs. dynamic allocation







Declaring/initializing Objects




Policy regarding .hh & .cc files
and inlining

= Consider eliminating .icc files (leaving just the .hh &
.cc files) and adopting a more coherent policy
regarding inline declarations, preferably in
accordance with the DRY (Don t Repeat Yourself)
principle, e.qg., by defining inline functions where they
are declared in the *.hh file (particularly as such
functions tend to have very short definitions)

= Having two files to look at instead of three would help

in locating comments and require that only .hh file is
to be looked at to find out which function is declared
inline

G4 Workshop, October 2009 On improving Geants performance, robustness and easing code maintenance

27



Summary/Main Suggestions




Suggested implementation of

assignment operator — backup slide




