
presented by Krzysztof Genser
for Fermilab Geant4 performance group
14th Geant4 Workshop, October 2009

1G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Walter Brown*
 Mark Fischler
 Krzysztof Genser*
 Jim Kowalkowski
 Marc Paterno
 Ron Rechenmacher

 For a total of about 0.6 FTE

 reviews this year done by people denoted with *

2On improving Geant4 performance, robustness and easing code maintenanceG4 Workshop, October 2009

 Fermilab Geant4 (G4) Performance Group
Activities and related matters

 Suggestions/Reminders regarding C++
coding techniques/style inspired by recent
reviews

3G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Completed Reviews of CHIPS and Field Propagation Modules
 CHISP g4 version 9.1.p03 FPM: g4 version 9.2.p01
 Delivered the results to the G4 Management in the form of written reports

 Nature of the findings:
 Most of the comments were related to the C++ coding techniques

having impact on code robustness and maintenance
 Among other findings: a potential ~0.5% level timing improvement in

CHIPS in a stand alone test resulting from replacing a collection of
pointers to objects with collections of objects (potentially ~0.5% per
collection?)
▪ This was in addition to the previous finding where

std::vector<G4Double>* T was replaced with
std::vector<G4Double> T which resulted in ~1.5% timing improvement in the CMS
offline environment

 (No significant opportunities for timing improvement noted in Field
Propagation Module)

4G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Reviews were guided by profiling done both
using standalone Geant4 tests/examples and in
the context of CMS environment CMSSW
(cmsRun)

 Tools used to guide the reviews:
 "SimpleProfiler" (C++ dynamic library collecting detailed

call stack samples, uses “libunwid”; about 1% overhead)

 "Performance Data Base" (see next slide)
▪ esp. helpful in simplifying the assessment of the

statistical significance of the timing differences

 Valgrind's Tool Suite

5G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Continued to improve "Performance Data Base"
 our system (written using Ruby on Rails and mySQL) for

recording performance run data
 work in progress continued to be done with the help of student

interns from Northern Illinois University

 Explained a previously found event irreproducibility
 correlated with bifurcation of event processing times across

many of the same jobs and
 different amount of random numbers drawn from generator

depending on computer architecture
 traced to different “firmware” implementations of sin (or, in

general, transcendental) functions for different CPU brands

6G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance 7

 Remarks inspired by and generalized from the
reviewed G4 code

 many of us came to C++ from other languages or
learned C++ when it was in its early deployment years

 the remarks below are partially a result of the
evolution of C++ and coding techniques

 Coding techniques can impact not only
performance but also the effort needed to read
the code and therefore the cost required to
maintain it

8G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Make sure to completely construct/initialize
and copy objects

 Move from native pointers and arrays to
higher level objects (“domain-specific
abstractions”)

 Utilize Standard Library (C++StdLib) more:
use, as often as feasible, not only numerical
functions but also containers and algorithms

9G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Make sure to completely construct/initialize and
copy objects
 one should be able to “reason about the code”, i.e.

constructors and assignment operators should
behave in the way most programmers would expect

 one should be able to use the objects with C++StdLib
containers and algorithms which do have certain
requirements (see e.g., N.M.Josuttis, “The C++
Standard Library”):
▪ public, “faithful” copy constructor & assignment operators

and public, nonthrowing destructor;
▪ some containers and algorithms may also require default (no

argument) constructor, equality ("==") operator, "<" operator

10G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Use initializer lists in the constructors (for
performance)

 list data members in the order they are defined
(for consistency)

 If there are no reasons to copy instances of a
class the class should be non-copyable

 declare its copy functions private and leave them
unimplemented

11G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Do not define/declare copy
constructor/assignment operators when not
needed (e.g., for objects with no pointer data
members or no data members at all) letting
compiler generate them

 In cases where the compiler-generated
constructors/assignment operators would not be
adequate, follow the prescription shown in e.g.,
H. Sutter “Exceptional C++” using copy-and-
swap as the implementation technique of the
assignment operator

12G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Avoid exposing pointers (of any kind) in
interfaces whenever possible

 especially avoid exposing native pointers to
clients as the pointee ownership becomes unclear

 it is easy to break code which uses pointers

 code with pointers is more difficult for compilers
to optimize

13G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Prefer containers of objects over containers of pointers; limit use
of containers of pointers to the following cases:
 when the exact type of the pointees is unknown (when relying on

polymorphic behavior)
 when one needs to perform operations which would involve expensive

data movement (e.g., swapping data when performing sorting)
▪ btw, swapping std::vectors (of anything) is not expensive [O(1) (constant time)],

no matter their size

 data replication would occur (e.g. creation of multiple lists of the same
objects: shared pointees)

 Operations on containers of pointers are more involved:
 each traversal introduces an extra dereferencing operation
 each time such a container were to be created, copied or destroyed, it

incurs the overhead of more expensive dynamic memory
management

14G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Smart pointers automate the management of resources
 they relieve programmers from the burden of doing so and

ensuring that the management is not accidentally overlooked or
mismanaged

 Prefer smart over bare/native pointers, e.g., std::auto_ptr
and, to be included in the new C++ standard, unique_ptr
and shared_ptr
 unique_ptr and shared_ptr are available already in, e.g., gcc by

enabling the correct compiler flags; (there are other sources
e.g. boost library)

 remember though that std::auto_ptrs can not be used as
container elements (they do not have copy semantics which
C++StdLib containers expect)

15G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Prefer to use appropriate containers (usually std::vector)
from the C++StdLib instead of arrays (together with
C++StdLib algorithms):
 one can replace explicit (hand-coded) loops to initialize or to

copy arrays with std::copy, std:fill, etc…, e.g.,
std::fill_n(Array1+0,mySize,myValue);
std::copy(Array1+0,Array1+mySize,Array2+0);

 when using std::vector, its copy and assignment operators
replace the explicit operations:
v2=v1

 Using even such simple algorithms as std::min and
std::max improves the clarity of the program text, and
often provides performance benefits as well (see an
example later)

16G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Using Functors (function objects) with C++StdLib algorithms
opens more possibilities and allows for more compact and
efficient code
 Functor is an object behaving like a function or “object which can be

invoked with ()” (function call operator)
 Simple functor example:

class multiplyBy {
private:

double multiplier;
public:

explicit multiplyBy(double m) : multiplier(m) { };
void operator() (double& a) { // note the operator()

a *= multiplier;
};

};

17G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Using the functor from the previous page:
…

std::vector<double> v; //container of doubles

...

std::for_each(v.begin(), v.end(), multiplyBy(factor));

…

 for_each takes an instantiated multiplyBy object
and calls its operator() for each element of v

 factor value can be determined at the run time

18G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Templatized functor example:
template <typename T1, typename T2>

class multiplyBy {

private:

T2 multiplier;

public:

explicit multiplyBy(T2 m) : multiplier(m) { };

void operator() (T1& a) { // note the operator()

a *= multiplier;

};

};

19G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Using the functor from the previous page:
…
std::vector<MomentumVector> VMV; //container of momentum

vectors
...
std::for_each(VMV.begin(), VMV.end(),

multiplyBy<MomentumVector,double>(factor));

 Functors have advantages over functions
 functors can be initialized/modified during run time
 multiple operations are usually faster compared to

function operations
▪ functors are usually inlined as the compiler typically has more

information compared to the case when using pointers to functions

20G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Consider to explicitly spell out class invariants
(state of the object) and encode them as
functions which could be used in debugging and
unit testing (to check if the object is in a
consistent state)
 the functions could be removed with #ifndef/#endif

blocks in the production code
▪ (see e.g., B.Stroustrup The C++ Programming Language

24.3.7.1)

 Some classes have very "natural" invariants, e.g., an
invariant mass for a particle four momentum

21G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 prefer pre-test loops: while…, for… over post-test
loops: do…while
▪ do…while does not permit zero number of executions of

the loop body

 use proper type for the loop controlling variables
▪ to minimize conversions

 prefer “!=“ operator in loop predicates
▪ not all iterators support operator “<“

 (prefer pre-increment/decrement operators when
the returned result of the post-increment/
decrement is unused: ++a vs. a++)

22G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Constructors callable with a single argument are the so called
conversion constructors
 They can be used implicitly, e.g., in assignments:

B b = aConstantOfTypeB;
A a = b; //implicit automatic type conversion

 They should be declared "explicit" when appropriate, to avoid
sometimes unexpected or unintended conversions:
explicit MomentumVector(double px=0.0,double py=0.0, double pz=0.0)

: mvpx(px), mvpy(py), mvpz(pz) { };
ParticleMV = 1;
//without the keyword explicit it means:
MomentumVector ParticleMV = MomentumVector(1.0,0.0,0.0);

and not e.g., a unit vector with equal components etc…

23G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 For local variables prefer automatic (stack)
over dynamic (heap) allocations

▪ remember the earlier-mentioned result of the
replacement of

std::vector<G4Double>* T

with

std::vector<G4Double> T

24G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Provide the inline documentation (== comments); at the
minimum clearly define the mission of the
classes/functions and state each algorithm’s name or main
idea

 Prefer short over long functions with many lines of code,
preferably with tens not (many) hundreds of lines.

 Consistently and consequently name literals (i.e., provide
meaningful names for constants used within the code) to
enable readers to understand the purpose of a constant
and to ease future code maintenance

25G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Declare objects when they are ready to be initialized (or as late as
possible)

 Initialize them with their correct values (rather than providing a value
that may have to be changed almost at once)

 Use the ternary ?: operator when appropriate and C++StdLib functions
when available, see the examples below

26

//example2

T g;
g = z;
if (x>0)

g = y;
compared to:

T g = x>0 ? y : z;

//example1

T g = z;
if (y>z)

g = y;
compared to:

T g = std::max(z,y);

G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Consider eliminating .icc files (leaving just the .hh &
.cc files) and adopting a more coherent policy
regarding inline declarations, preferably in
accordance with the DRY (Don't Repeat Yourself)
principle, e.g., by defining inline functions where they
are declared in the *.hh file (particularly as such
functions tend to have very short definitions)

 Having two files to look at instead of three would help
in locating comments and require that only .hh file is
to be looked at to find out which function is declared
inline

27G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Fermilab Geant4 performance group have continued to profile and
review the Geant4 code

 Main suggestions inspired by the reviews/profiling:
 Make sure that objects (all data members) are completely initialized and that

the copy constructors and assignment operators do complete copies as
expected by the Standard Library Standard Library Containers and Algorithms

 Move from native pointers and arrays to higher level objects including
Standard Library Containers (also to enable wider use of related Algorithms)

 Provide more inline documentation (== comments); at the minimum always
clearly define the mission of the classes/functions

 Plans:
 Considering to continue reviews and profiling (concentrate not only on C++

itself but also more on the algorithmic level)
 Continue to develop and improve our "Simple Profiler" and "Performance

Data Base" tools

28G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

 Ensure that T has a correct and faithful copy constructor, and a non-throwing
destructor that correctly disposes of any resources held by the class

 Provide T with a non-throwing swap function to exchange the values of two variables
of type T.
 It is always possible to implement such a swap function for any class T by invoking an appropriate

swap function for each of T's data members: For each data member of T whose type is a native (built-
in) type, invoke std::swap, and for each data member of T whose type is either a library type (e.g.,
std::vector) or a user-defined type, invoke its own swap member.

 Write T's copy assignment operator according to the following model which, by
construction, is correct as well as exception-safe in all cases, including the rarely-
occurring self-assignment (see e.g., H.Sutter “Exceptional C++”)

T & operator = (T const & other) {
T tmp(other); // if this throws it is before the left hand side is affected!
tmp.swap(*this);
return *this;

}

 (Ensure operator “==“ ,if provided, holds true after copy)

29G4 Workshop, October 2009 On improving Geant4 performance, robustness and easing code maintenance

