

Gabriele Camellini

CERN – PH-SFT – Geant4 team

20 October 2009

14th Geant4 Users and Collaboration Workshop,

Catania, Italy, 15-22 October, 2009

CERN – Geant4 group

Gabriele Camellini

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

OUTLINE

- ✓ Introduction
- B-Rep solids in Geant4
- Surface of revolution
- Surface of linear extrusion
- ✓ Example
- Conclusions and extensions

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

B-Rep solids

Constructive model (CSG)

Boundary model (B-Rep)

Boundary REPresentation

- ✓ Geometric entities: point, curve, surface
- ✓ Topological entities: vertex, edge, face (boundaried surface), edge_loop
- ✓ Elementary surfaces (plane, cylindrical s., …) Advanced surfaces (swept s., …)

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

Swept Surfaces (Generalized Cylinder)

✓ Swept surfaces are generated by moving a 2D curve along a trajectory in 3D space.

✓ Curve can also change its shape and orentation during sweeping.

✓ **Generalized cylinder** is the shape generated when a 2D contour is swept along a 3D trajectory.

✓ Contour define the cross-section of the object.

✓Trajectory is the axis of the object.

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

Surfaces of revolution & linear extrusion

✓ In the geometrical modelling, like
Computer-Aided Desing, are commonly
used only two kinds of generalised cylinders.

 \checkmark These solids are obtained by extrusion or revolution of 2D contour.

 \checkmark For define these solids it's necessary use the corresponding surfaces.

 \checkmark Definition of swpet surface by generic curves can generate a surfaces with inifinite extension.

 \checkmark In this case, for generate a solids, is necessary trimming the surface along the swept direction and also should be limited the 2D curve by definition of the bounds.

Linear extrusion Revolution Conclusion

BREP in Geant4

✓ **G4BREPSolid** is defined by a collections of boundaried surfaces

G4Surface

- ✓ Boundaries
- ✓ Bounding box
- \checkmark Intersection with a ray
- ✓ Point to surface distance
- ✓ Normal vector to surface

Plane , cylindrical, conical, toroidal, bspline, bezier

G4Curve

- ✓ 3D point & parameter value
- ✓ Bounds
- ✓ Bounding box
- ✓ Intersection 2D curve with a ray

✓ Tangent

✓ (curve-curve intersection)

Conics, line, Bspline, composite

Linear extrusion Revolution Conclusion

Surface of linear extrusion

It's generated by a 2D contour swept along a segment of line.

 $\sigma(u,v) = \lambda(u) + vV$

- $\checkmark \lambda(u)$ parametrization of the swept curve
- $\checkmark V$ extrusion direction
- $\checkmark -\infty < v < +\infty$ parametrization range

In current implementation

 $\checkmark\,$ 2D swept curve is defined on a ortogonal plane to extrusion axis and need be closed

 \checkmark z axis rapresents extrusion direction

G4SurfaceOfLinearExtrusion (const &G4Curve curve, G4double length)

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

Surface of linear extrusion

Bounding box

- the BB of the boundaried swept curve must be included

- the bounding box of the surface is extendend by including also the BB translated along the extrusion axis

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

Surface of linear extrusion

Ray intersection

- 3D ray in local coordinate
- $r(t) = S + t \cdot D$ t > 0, |d| = 1
- the ray is projected on the plane where is definend the base curve
- 2D ray curve intersection is determined
- the 2D intersection distance is mapped easly to a 3D intersection distance, given the direction and the source point of the ray

Introduction Swept surfaces BREP Geant4 Linear extrusion Revolution Conclusion

Surface of revolution

 ✓ It's generated by a 2D contour swept along a circular trajectory

✓ Equivalently the solid can be generated by rotation of the 2D contour around an axis.

✓ If the base curve isn't closed (usual case), it's alway possibile generate a solid by adding two circular planar surface for the bottom and the top of the solid.

Solid of revolution

Bounding box

- is computed by extend the bounding box of the base curve with its replications on each semi-axis (x pos/neg, y pos/neg)

Surface of revolution

Ray intersection

leant 4

- ✓ Boundary Cylindrical Shell
- \checkmark This allow to limit z interval
- ✓ The ray is "cylindrical proiected" on the plane that is swepted (cylindrical coordinate system $x^2+y^2=r^2$)
- ✓ The image of the ray is not a ray but is a hyperbola
- ✓ The first intersection of the two curves is computed: (r_0, z_0)
- \checkmark With z₀ and ray equation we can obtain the 3D intersection point and the distance

G4BREP solids

- ✓ G4BREPSolidOfLinearExtrusion
- ✓ G4BREPSolidOfRevolution
- \checkmark Inside operation

generates a ray from the point and check if it intersects one of the surfaces

CERN – Geant4 group

Gabriele Camellini

Conclusions

Actual implementation

✓ Linear extrusion for base curves

✓ Surfaces of revolution (not complete for bspline curves)

Incoming

✓ Tangent computation for BSpline

 ✓ Alternative technique for compute ray revolution surfaces intersection by binary subdivision of bo

Future work

- ✓ Diagonal extrusion
- ✓ Conical extrusion
- ✓ Extrusion along an arbitrary curve
- ✓ Revolution suface limitated by phy section

END

Thanks

CERN – Geant4 group

Gabriele Camellini

20/10/2009