BREPS solids construction by surfaces of extrusion \& revolution

Gabriele Camellini

CERN - PH-SFT - Geant4 team

20 October 2009

14th Geant4 Users and Collaboration Workshop, Catania, Italy, 15-22 October, 2009

OUTLINE

\checkmark Introduction
\checkmark B-Rep solids in Geant4
\checkmark Surface of revolution
\checkmark Surface of linear extrusion
\checkmark Example
\checkmark Conclusions and extensions

B-Rep solids

Constructive model (CSG)

Boundary REPresentation

\checkmark Geometric entities: point, curve, surface
\checkmark Topological entities: vertex, edge, face (boundaried surface), edge_loop
\checkmark Elementary surfaces (plane, cylindrical s., ...) Advanced surfaces (swept s., ...)

SMESt Surfaces

(Generalized Cylinder)

\checkmark Swept surfaces are generated by moving a 2D curve along a trajectory in 3D space.
\checkmark Curve can also change its shape and orentation during sweeping.
\checkmark Generalized cylinder is the shape generated when a 2D contour is swept along a 3D trajectory.
\checkmark Contour define the cross-section of the object.
\checkmark Trajectory is the axis of the object.

Surfaces of revolution \& linear extrusion

\checkmark In the geometrical modelling, like Computer-Aided Desing, are commonly used only two kinds of generalised cylinders.
\checkmark These solids are obtained by extrusion or revolution of 2D contour.
\checkmark For define these solids it's necessary use the corresponding surfaces.

\checkmark Definition of swpet surface by generic curves can generate a surfaces with inifinite extension.
\checkmark In this case, for generate a solids, is necessary trimming the surface along the swept direction and also should be limited the 2D curve by definition of the bounds.

BREP in Geant4

\checkmark G4BREPSolid is defined by a collections of boundaried surfaces

G4Surface

\checkmark Boundaries
\checkmark Bounding box
\checkmark Intersection with a ray
\checkmark Point to surface distance
\checkmark Normal vector to surface

Plane , cylindrical, conical, toroidal, bspline, bezier

G4Curve

\checkmark 3D point \& parameter value
\checkmark Bounds
\checkmark Bounding box
\checkmark Intersection 2D curve with a ray
\checkmark Tangent
\checkmark (curve-curve intersection)

Conics, line, Bspline, composite

Surface of linear extrusion

It's generated by a 2D contour swept along a segment of line.

$$
\sigma(u, v)=\lambda(u)+v V
$$

$\checkmark \lambda(u)$ parametrization of the swept curve
$\checkmark V \quad$ extrusion direction
$\checkmark-\infty<v<+\infty \quad$ parametrization range
In current implementation
\checkmark 2D swept curve is defined on a ortogonal plane to extrusion axis and need be closed
\checkmark z axis rapresents extrusion direction

G4SurfaceOfLinearExtrusion (const \&G4Curve curve, G4double length)

Surface of linear extrusion

Bounding box

- the BB of the boundaried swept curve must be included
- the bounding box of the surface is extendend by including also the BB translated along the extrusion axis

Surface of linear extrusion

Ray intersection

- 3D ray in local coordinate
- $r(t)=S+t \cdot D \quad t>0,|d|=1$
- the ray is projected on the plane where is definend the base curve
- 2D ray - curve intersection is determined
- the 2D intersection distance is mapped easly to a 3D intersection distance, given the direction and the source point of the ray

Surface of revolution

\checkmark It's generated by a 2D contour swept along a circular trajectory
\checkmark Equivalently the solid can be generated by rotation of the 2D contour around an axis.
\checkmark If the base curve isn't closed (usual case), it's alway possibile generate a solid by adding two circular planar surface for the bottom and the top of the solid.

Solid of revolution

Bounding box

- is computed by extend the bounding box of the base curve with its replications on each semi-axis (x pos/neg, y pos/neg)

Surface of revolution

Ray intersection

\checkmark Boundary Cylindrical Shell

\checkmark This allow to limit z interval
\checkmark The ray is "cylindrical proiected" on the plane that is swepted (cylindrical coordinate system $\left.x^{2}+y^{2}=r^{2}\right)$

\checkmark The image of the ray is not a ray but is a hyperbola
\checkmark The first intersection of the two curves is computed: $\left(r_{0}, z_{0}\right)$
\checkmark With z_{0} and ray equation we can obtain the 3D intersection point and the distance

G4BREP solids

\checkmark G4BREPSolidOfLinearExtrusion
\checkmark G4BREPSolidOfRevolution
\checkmark Inside operation
generates a ray from the point and check if it intersects one of the surfaces

Example

Conciusions

Actual implementation
\checkmark Linear extrusion for base curves
\checkmark Surfaces of revolution (not complete for bspline curves)

Incoming
\checkmark Tangent computation for BSpline
\checkmark Alternative technique for compute ray -
revolution surfaces intersection by binary subdivision of bo

Future work
\checkmark Diagonal extrusion
\checkmark Conical extrusion
\checkmark Extrusion along an arbitrary curve
\checkmark Revolution suface limitated by phy section

BREPS solids construction by surfaces of extrusion \& revolution

END

Thanks

