Hadronic generator tests for spallations and low energies

A.V. Ivantchenko, V.N. Ivanchenko

14th Geant4 Users and Collaboration Workshop, INFN/LNS, Catania(Italy), 15-22 October 2009

Status of low-energy CERN tests

- Technical improvements for test30:
 - Fixed target isotope definition
 - Fixed inelastic X-sections for ions
 - Options for Pre-Compound/deexcitation
- Test30 is used routinely
- Test35 extended for forward reactions

•
$$\pi^{\pm} + A \rightarrow \pi^{\pm} + X$$
 for $3 - 12$ GeV/c

The new IAEA test have been developed

IAEA test

- The International Atomic Energy Agency (IAEA) and the Abdus Salam International Centre for Theoretical Physics (ICTP) organized in 2008 an expert meeting on model codes for spallation reactions and propose a common benchmark
- In December 2008 Geant4 decided to participate in the benchmark with following goals:
 - Extension of validation suite, in particular, for light ions;
 - Objective comparison of Geant4 models versus competitive codes;
- IAEA benchmark software have been developed on the base of test30
- Results are obtained with 9.2patch01 and sent to IAEA in April 2009
- J.-M.Quesada presented results on AccApp'09 Conference (Vienna, May 2009)
- Currently results for 9.2ref08 are available

IAEA spallation benchmark

Mandatory set of data with the beam energy 20MeV-3GeV

*Neutron production

Double-differential Cross Sections Neutron Multiplicity Distribution

*Light charged ions production (p, d, t, He3, He4)

Double-differential Cross Sections

*Isotope production cross-sections

(excitation functions)

*Isotopic distribution cross-sections with inverse kinematics

*Pion production

Double-differential Cross Sections

n Bi 542 ddxs, n Fe 65 ddxs, p Al 160 ddxs, p Al 2205 ddxs, p Al 730 ddxs, p Au 1200 ddxs, p Au 160 ddxs, p Au 2500 ddxs, p Bi 62 ddxs, p C 730 ddxs. p_Cu_730_ddxs, p Fe 100 res isot, p Fe 1200 ddxs, p_Fe_1600_ddxs, p_Fe_3000_ddxs, p Fe 300 res isot, p Fe56 62 ddxs, p Fe 800 ddxs, p_Ni_175_ddxs, p Pb_1000_res_isot, p_Pb_1200_ddxs, p_Pb_1600_ddxs, p_Pb_256_ddxs, p Pb 3000 ddxs, p Pb 500 res isot, p Pb 63 ddxs, p Pb 730 ddxs, p_Pb_800_ddxs, p_Ta_1200_ddxs, p_U_1000_res_isot_gsi **Isotope production directories**

Improvements in Geant4 models using the benchmark results (fixing number of very old problems for 9.2p01)

- Bertini model
 - Fixed pion absorption (D.Wright)
- PreCompound and deexcitation models
 - Fixed computation of emission probabilities for light ions (J.M.Quesada)
 - Tried different Coulomb barrier factors (J.M.Quesada)
 - Fixed GEM model for isotopes production (T.Koi and J.M.Quesada)
- Fission model (J.M.Quesada)
 - Fixed computation of fission probability
 - Tried different probability functions for fission
 - Fixed 4-momentum balance in fission
- Checked multi-fragmentation model
 - Not relevant for this data

Examples of improvements for 9.2p0 I ³He and ⁴He production in Ta at 1.2 GeV

Comparison of relative CPU time for I GeV p beam interaction with Fe and Pb targets (pcgeant04, geant4-09-02-ref-05)

Model	p+Fe	p+Pb
Bertini	1	2.0
Binary	9.5 (10.6*)	35.5 (37.0*)
Binary_ion	11.4 (9.7*)	37.0 (36.2*)
QMD	10756	13880
CHIPS	7.6	8.1
INCL	7.5	38.1

^{* -} GEMEvaporation added

RESULTS sent to the IAEA and presented on the AccApp'09 conference at Vienna (May, 2009) (Geant4 official release 9.2 patch p01)

- List of active participants
 - CEM03
 - PHITS
 - Cascade04
 - Isabel
 - Geant4
 - INCL4 ??
 - FLUKA ??

Proton Spectrum with low energy projectile

Overestimated

Underestimated

Binary is not good enough Bertini is one of the best

Forward angle

p (1200 MeV) + Au -- Helium-4 spectrum 10² 16° budzanowski et al. 🗢 cascade04 cem0302 cem0303 ---10¹ g4bert g4bic isabel-gemini++ -isabel-smm $d^2 \sigma / d\Omega dE \ (mb/sr/MeV)$ phits-bertini phits-jam phits-jqmd 10⁻³ 50 100 150 200 250 300 350 400

Emitted particle energy (MeV)

Backward angle

Tools for benchmarking of Spallation by M. U. Khandaker (IAEA), AccApp'09, Vienna, May 4-8, 2009.

RECENT RESULTS

(geant4-09-02-ref-08)

Neutron production at 1200 MeV in Fe

Neutron multiplicity

 This results demonstrates that at 1.2 GeV the Bertini cascade provides a correct multiplicity of secondary neutrons

Pion production at 730 MeV in Cu

Deuteron production at 63 MeV in Pb

Tritium production at 63 MeV in Pb

³He production at 1200 MeV in Ta

Alpha production at 63 MeV in Pb

Alpha production at 175 MeV in Ni

Fission at 1 GeV (New CombinedGEM is used in Binary cascade)

Summary

- New IAEA benchmark have been created which includes new tests for light ion production, fission, neutron multiplicity
- Test30, test35, and IAEA are now used routinely
- Geant4 provides not ideal but competitive results with other codes used in IAEA benchmark
- There are still problems in Geant4 generators