Incorporation of Goudsmit-Sounderson electron transport theory into Geant4

Omrane KADRI
(National Center for Nuclear Sciences and Technologies –Tunisia)

Presented by:
Prof. Vladimir IVANCHENKO
CERN

15-22 October 2009 Geant4 Workshop Catania

Contents

- Introduction
- Cross section data base
- Angular distribution sampling
- Displacement sampling
- Preliminary result
- Conclusions

Introduction

Multiple scattering « process » of e-/e+ through matter is mainly described with a group of theoritical models of :

- -Angular distribution
- -Displacement sampling
- -Path length limitation

The G4GoudsmitSaunderson model use:

- -Goudsmit-Saunderson → Angular distribution
- -I. Kawrakow and A. Bielajew → Lewis moments → Displacement sampling
- -L. Urban → Path length limitation
- -L. Urban → Step limitation algorithm

As a first step the following energy-dependent parameters should be correctly implemented:

- Total elastic cross section
- First transport cross section

Cross section DB

From the ELSEPA code (Salvat et al.), a cross section DB was generated covering:

- -Z (1-103)
- -E(0.1 keV 1 GeV)
- e-/e+
- -> Cubic spline for interpolation in log-log
- -→ linear log-log for extrapolation (E> 1GeV)

Figures show a comparison between Xsections of the GSModel and those of Urban → good agreement for E between (1 keV-1GeV) for all elements

Angular sampling

GS PDF (probability density function)

$$F_{GS}(\theta, s) = \sum_{l=0}^{\infty} (l + 1/2) e^{-sQ_l} P_l(\cos(\theta))$$

$$Q_l = 1 - yK_1(y) \left\{ 1 + 0.5y^2 \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{l} - 0.5 \ln(l(l+1)) - 0.5772 \right\} \right\} \quad y = 2\sqrt{l(l+1)A}$$

A:screening parameter

$$F_{GS}(\theta, s) = \exp^{-s} \delta(1 - \cos(\theta)) + s \exp^{-s} f_1(\theta)$$
$$+ (1 - s - s \exp^{-s}) \sum_{l=0}^{\infty} (l + 1/2) \frac{\exp^{-sQ_l} - [1 + s(1 - Q_l)] \exp^{-s}}{1 - (1 + s) \exp^{-s}} P_l(\cos(\theta))$$

No, simple and multiple scattering probabilities

Lambda (path length in terms of mean free path)

Illustrative example for the inverse cumulative method used to generate angular sampling

Angular sampling

The look-up table (angular distributions DB):

- -76 values of Lambda covering 1- 10^5
- 11 dynamic values of A
- 320 values of theta

→ Dynamic value: covering the range of Q1 from 0.001 to 0.5

Q1<0.001 → small angle approximation (exponential distribution)
Q1>0.5 → isotropic distribution

Figures are part of the DB For lambda=1 and 100 as examples

Angular sampling

Using a correct interpolation (Benedito et al.) method for a given lambda, screening parameter and a random number

→ generate the angle of distribution

Example: angular distribution of 15.7 MeV/e- two thin foils of Gold compared to data (Hanson et al.): empty circle and square for the current model and filled circle and square for Hanson data

Displacement sampling

In the MSC regime, each step was subdived into two equal sub-steps (I.Kawrakow et al.)

Figures show a comparison if using:

- -One step
- two equal sub-steps
- two randomly sub-steps, In the case of (100keV e-/Pb), for longitudinal, transversal and radial distributions

Omrane KADRI - Geant4 Workshop - 15 - 22 October 2009 - Catania

Results

0.521 MeV/e- through AI: Sandia data (filled square) compared to current calculations

Results

Benchmarks against Seltzer data: S: Seltzer data; T: this work; TN (RN), transmission (reflection) coefficient number; TE (RE), transmission (reflection) energy coefficient; PhiA, energy absorption coefficient. Cases of electrons with kinetic energy of 100, 150, 200, 300 and 400 keV normally incident on slabs of Al and Ti.

		100		150		200		300		400	
		100		100		200		500		400	
	Param	\mathbf{S}	${\bf T}$	\mathbf{S}	${\bf T}$	S	${\bf T}$	\mathbf{S}	${ m T}$	\mathbf{S}	${\bf T}$
Al	TN	0.602	0.607	0.918	0.924	0.968	0.980	0.997	1.001	1.004	1.006
	$^{\mathrm{TE}}$	0.393	0.403	0.766	0.772	0.880	0.883	0.949	0.949	0.969	0.968
	RN	0.124	0.126	0.070	0.075	0.031	0.037	0.010	0.011	0.005	0.005
	RE	0.071	0.072	0.045	0.046	0.022	0.025	0.007	0.007	0.002	0.003
	PhiA	0.536	0.532	0.189	0.188	0.098	0.096	0.044	0.045	0.029	0.029
Ti	TN	0.105	0.082	0.597	0.565	0.808	0.812	0.957	0.969	0.985	0.996
	TE	0.050	0.039	0.419	0.394	0.662	0.660	0.873	0.878	0.931	0.936
	R.N	0.224	0.186	0.213	0.209	0.161	0.168	0.053	0.054	0.024	0.024
	RE	0.142	0.118	0.133	0.129	0.107	0.111	0.039	0.040	0.018	0.018
	PhiA	0.808	0.847	0.448	0.489	0.231	0.243	0.088	0.089	0.051	0.051

Conclusion

- -Until now, a good satisfaction is seen (at least for the studied cases)
- -CPU time consuming will be improved
- -The plural scattering regime will be improved using the forced interacting technique

THANK YOU