FEEDBACK FROM HEP EXPERIMENTS

Geant4 Collaboration Meeting - Catania, 19 Ottobre 2009

A. Dotti for the Geant4 Collaboration

Content

- Emerging requirements on physics performance
- Feedback and requests for software robustness and performance
- LHCb Feedback

Hadronic Issues

Issues reported, in order of decreasing "impact" on data

- Discontinuities in some calorimeter observables as a function of the beam energy, due to the transition between hadronic models
 - It can affect the simulation of jets
 - It can affect the hadronic calibration of ATLAS calorimeters
- Proton longitudinal shower profiles are shorter than data in QGS-based Physics Lists, due to diffraction
 - It can affect the simulation of jets
- Lateral shower profiles are a bit narrower than data
 - Probably not a big issue for LHC experiments, but for ILC it could be a serious problem (very granular calorimeters)
- Energy resolution a bit too good in simulation
- Energy response a few % too high in simulation

See A. Ribon's Presentation Friday

Additional Feedback/Requests

- Hadron response in W:
 - Initial studies from CLIC report unphysical response to hadrons in a tungsten block: bimodal response (under study), much probably related to the "transition region" effect
- Visualization of Boolean solids (CMS)
- Physics lists per G4Region:
 - This would allow to optimize performance Vs accuracy for systems with different calorimeters (homogeneous Vs sampling). This is important for CMS
- Muon Multiple Scattering:
 - Correlation between angle and displacement is lost after LHCb Absorbers. Due to long
 G4Steps limited only by volume boundaries, displacement is not correctly simulated
- Physics lists potential issues for LHCb (LHEP)
 - LHCb requires that interactions of pions and kaons in thin (Si) layers is well described: dE/dx but also cross-sections
- Service CMS: Interest in use of Glauber-Gribov cross section above 90-100 GeV
- BESIII: poor anti-proton simulation (cross sections)

Performance/Robustness Issues

Bugs/Crashes:

No major reports. Report from ATLAS: crash in hadronics with G4 9.2 (under study).
 Since October '08 produced over 650*106 events (plus additional 500*106 events w/o calorimeters)

Robustness:

- Stuck tracks: ATLAS reports 0.1%-1% jobs (=1/5000-50000 events or 1/~10¹¹⁻¹² Steps) with one track making very small steps(but big enough to prevent warnings), track processing takes very long and the job is eventually aborted
- LHCb report: potential overlaps from rounding issues. Two exactly equal numbers in geometry-database may differ (Δ << μ m) after geometry transformations are applied. Can G4 geometry module improve checks to reduce these cases?

Reproducibility:

CMS reports that history of same job with gcc345 and gcc432 differs. Example: inelastic interaction producing two different final states (under study)

Use of Memory:

 LHC experiments report high use of memory, improvements are possible optimizing code and reducing memory fragmentation

LHCb Contribution

The LHCb experiment

- Designed to make precision measurement of CP violation and other rare phenomena in the b system at the LHC
- Trigger and reconstruct many different B decay modes to make independent and complementary measurements
- LHCb is a single arm forward spectrometer
- Forward production of bb, correlated

- Amount of material in tracker area kept as low as possible (0.6X₀ up to RICH2)
- HCAL used mainly for trigger purpose

12 mrad < θ < 300 (250) mrad i.e. 2.0 < η < 4.9

The Gauss Application

Gauss is the LHCb simulation application

Two INDEPENDENT phases normally run in sequence in a single job

Event Generation

primary event generator specialized decay package pile-up generation

Detector Simulation

geometry of the detector (LHCb → Geant4)
tracking through materials (Geant4)
hit creation and MC truth information (Geant4 → LHCb)

Gauss in production: MC09

- LHCb latest major production (MCO9) started at beginning of June:
 - exercise physics selection over 109 MinBias events
 - massive production of signal
 - · production over the Grid
 - · two phases:
 - production: MC simulation and reconstruction
 - stripping: event pre-selection

3M jobs run45000 jobs/day

Gauss in production: MC09

- 10⁹ MinBias events, few hundreds Millions of signal events (b,c,Z,Higgs...) produced
- No Spillovers simulation

- Gauss used in MC09:
 - Pythia 6 418.2 for pp-collision
 - EvtGen with latest merge from different experiments for B decays
 - · Geant4 9.1r3 for detector simulation

G4 Range cuts applied:

10 mm for gamma's

5 mm for e+

10 km for e- to have delta-rays off in trackers but affect dE/dx (see later)

Debugging Gauss in production

- Important to trace back reason of crashes and problems not leading to crashes (event aborted) during production:
 - · impossible to look trough 45000 job log files /day
 - G4 errors detected at job level during production and combined for a given sample
 - dump of error messages together with RunNr, EventNr -> full reproducibility of event (random seed reset every event)
 - · in final commissioning phase, will provide info relative to MCO9 in near future

Debugging Gauss in production

Main G4 problems encountered during production:

- 1) jobs hanging in production (~ several%)
 - v or n of few MeV ping-ponging between Universe and an upstream volume (protection has been introduced to kill these particles)
 - charged particles of zero steps (G4 pushing them) in the same volume (protection introduced)

WARNING - G4PropagatorInField::ComputeStep(): Zero progress for 51 attempted steps.

- investigation with G4 crew revealed:
- due to precision problem there was an overlap between the volume (a Polycone) and its mother.
- loss in precision of one of the planes of the Polycone
- this Overlap was not appearing if checked with G4 David Tool, detected with overlap check in G4PVPlacement.
- 2) in ~0.5% of events aborted by G4 due to:

G4Exception: StuckTrack issued by: G4Navigator::ComputeStep()
Stuck Track: potential geometry or navigation problem

track stuck message but G4 returning "no overlaps found" in check

Physics tuning studies

Two main simulation issues:

- G4 description of dE/dx in thin Si detectors
- G4 Multiple Coulomb Scattering simulation in case of large step sizes and dense material

dE/dx in thin Si Detectors

- 3 detectors in LHCb use Si of different thickness (220μm,400μm, 600μm)
- Particle guns (50k muons at fixed Energy) studies performed
- Results of simulation compared to simple model describing data
 Recent G4 versions -> much better agreement

dE/dx in thin Si Detectors

- in 64 7.1.p03 the dE/dx intrinsic width was too small (atomic binding correction was missing) -> in digitization phase smearing was applied
- in 64 9.1 the atomic binding is simulated (width is close to expectation) -> correction no longer needed.
- the width seems to be a bit overestimated w.r.t. theory (~5% for 400µmSi)
- still remain problem in vertex detector (220µm Si) simulation: Landau width too wide w.r.t. test beam data

- better agreement with δ-rays on
 - still problem at high βγ for muons
- unphysical differences between muons and pions?
- Landau + smearing for atomic binding
- G4 9.1.p01/p02/p03 (pions)
- G4 9.1.p01/p02/p03 (mu with δ-rays ON)
- G4 9.1.p01/p02/p03 (muons)
- G4 9.1.p01/p02/p03 (pions with δ-rays ON)

MCS in LHCb MUON system

- Muon trajectories are dominated by multiples scattering interactions in the Calorimeters and Muon Filters
- The MCS in G4 is not correctly simulated in case of dense material and large step sizes (MUON Filters are a perfect example!) -> correlation between displacement and angular deviation not maintained.
- Step size not constrained by other factors (no B field simulated in that region)

- MCS problem may affects also the momentum measurement in the track fit when propagation of track over large distances (e.g. Magnet) -> poor q/p parameter pull.
- Situation improved in current production but still the q/p pull is worse than the other track parameters.

MCS in LHCb MUON system

• in future productions activation of δ -rays. Side effect G4 reduces the step length -> correct description of correlation (still slightly differences with PDG)

- default (δ -rays OFF)
- with δ -rays ON

MCS in LHCb MUON system

- MCS description in G49.1p03 (G4MuMscModel) slightly improved w.r.t. G4 8.2 (G4MuMultipleScattering), independently of δ -rays.
- Still slight differences with PDG
- Set up monitoring plots specific for MCS, to be investigated with Gauss based on G49.2p2 (being commissioned)

Conclusions

- Major issues under investigation are on hadronic simulation
- No major issues on the technical side, however, since the experiment sw is becoming mature and stable more and more emphasis is put on performance/robustness (especially use of memory and reproducibility)
- Geant4 9.2.pXX will be the simulation code for ATLAS, CMS and LHCb first runs: we can expect many new comparison (and requests) with first data in 2010

Backup Material

Pion Response In W

tungsten simulation issues (on big block of tungsten) QGSP_BERT QGSP_BERT_HP

- large differences of deposited energies
- •much narrower distribution without HP neutron model

Memory Usage

- Example from ATLAS:
 - G4Transportation alloc/dealloc lot of memory
 - Default stepper (RK4) access memory ten times per step
 - An ATLAS custom stepper reduces access to B-field and adds caching of values
- Similar problem in BERTINI code (many alloc/dealloc):
 - Some patches done to improve code
- Smaller number of alloc/dealloc improves also performances: ATLAS reduction of 1.3GB/event of alloc/dealloc saves 10% CPU

Energy Response Discontinuities

Energy response in simplified Cu-LAr calorimeter

Geant 4 A. Dotti

14th Geant4 Users and Collaboration Workshop

K/π In Thin Layers (LHCb)

- Cross sections used at the moment:
 - $\sigma_{\pi N}$ (LHEP): GEISHA cross-section
 - lacksquare $\sigma_{\pi N}$ (OTHERS): Barashenkov cross-section data
 - σ_{KN} : GEISHA cross-section from πN with scaling factor probably non optimal
 - \bullet $\sigma_{pN}(LHEP)$: GEISHA cross-section data
 - ullet σ_{pN} (OTHERS): Wellish-Axen cross-section
- Different models for cross sections under validation, will increase flexibility/precision

Performance: ATLAS

WARNING: timing of ATLAS sw, not only G4 code

-20% with slc5/gcc4.3

Simulation Optimization (CMS)

Performance optimization

Tuning and optimization of the CMS simulation software; F. Cossutti; CHEP 2009