Parallel Session II: Model development and comparison with experiments (M.Kosov)

1. Pekka Kaitaniemi, Developments in INCL/ABLA pal $_{\text {(Gev) }}$

Physics list QGSP_INCL_ABLA

Carbon projectile support in INCL will be available for Geant4 9.3 Strong focus on improving the light ion support Produce a simplified cascade model prototype with the new code early 2010. The code should be able to do more realistic physics by next summer.

2. J. M. Quesada, Progress in GEM and PreCompound models IAEA benchmark of spallation data: 20 MeV to $\mathbf{3} \mathrm{GeV}$ Isotope production at 1000 MeV

3. KOI, Tatsumi, QMD Update Corrected meson absorption

180MeV Proton on AI
Fragment $\mathrm{A}=7$

4. KOI, Tatsumi, The ENDL interface ENDL is open to public ENDL does not do Doppler broadening on flight Mass problem
5. M. Kosov, CHIPS (n, γ) capture 105 nuclides covered by the present nA CHIPS implementation

Only stable or long living isotopes (for A>227) with
H-As known natural abundance

Angular distribution
16MeV neutron on 197Au

ENDF/B-VII was used for the cross-sections improvement The CHIPS fit can be easily supported and updated
6.C.Agodi, A.Blancato, G.A.P.Cirrone, G.Cuttone, M.De Napoli, F.Giacoppo, E.Rapisarda, F.Romano, D.Sardina, C.Sfienti, S.Tropea

FIRST: Fragmentation of lons Relevants for Space and Therapy

INFN (LNS,LNF,MI,TO,RM2,RM3)
C.Agodi, G.Battistoni, T.Bohlen, G.A.P.Cirrone, G. Cuttone, M.De Napoli, E.larocci, F.Marchetto, M.C.Morone, V.Patera, E.Rapisarda, F.Romano, P.Sala, A.Sciubba, C.Sfienti, E.Spiriti

Dsm/IRFU/SPHN CEA,IN2P3: Saclay, Caen, Strasbourg, Lyon
A.Boudard, J.E.Ducret, F.Haas, M.Labalme, S.Leray, M.D.Salsac, C.Ray
T.Aumann, K.Boretzy, M.Durante, M.Helic, A.Kelic, R.Pleskac, M.V.Ricciardi, D.Schardt. C.Scheidenberger. H.Simon. M. Winkler
$p, d, t,{ }^{3} \mathrm{He}, \alpha,{ }^{6} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$, ${ }^{7} \mathrm{Be},{ }^{9} \mathrm{Be},{ }^{10} \mathrm{~B},{ }^{11} \mathrm{~B},{ }^{11} \mathrm{C}$

MUSIC $\rightarrow Z / p, \theta, \varphi$ after bending MUSIC \rightarrow Energy loss $\propto(Z / \beta)^{2}$ Hodo \rightarrow Large angle fragment energy, θ, φ Vertex \rightarrow Fragments emission θ, φ To extract $Z, A, \theta_{\text {eniss }}, P_{\text {emiss }}$ the reconstruction must exploit all the setup information
Start and TOF wall \rightarrow TOF $=L(p, Z, \theta, \varphi) / \beta$
Bmon \rightarrow Beam impact point
LAND2 \rightarrow neutron flux

