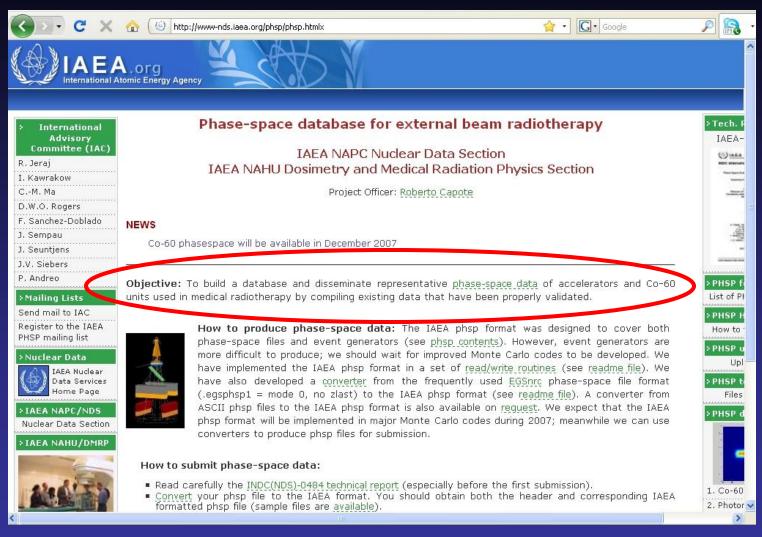


A stable interface to read and write IAEA phase-space files in Geant4

M. A. Cortés-Giraldo¹, R. Capote², J. M. Quesada¹


¹Dep. Física Atómica, Molecular y Nuclear, University of Sevilla, Spain. ²Nuclear Data Section, IAEA Headquarters, Austria.

14th Geant4 Collaboration and Users' Workshop LNS-INFN (Catania, Italy)

October 21st, 2009

- Interface to read and write phase-space files in IAEA format
 - The IAEA Nuclear Data Section Project
 - Description of the interface
 - IAEA routines
 - Writer class
 - Reader class
 - Results
- Summary and conclusions

The IAEA Nuclear Data Section Project

(http://www-nds.iaea.org/phsp)

• The IAEA format:

- The IAEA has created a standardized format to unify files made by different codes.
- The complete IAEA format consists of two files:
 - *****.**IAEAphsp**: binary file where all the positions, momenta and extra-variables are stored.
 - *****.**IAEAheader**: ASCII file with miscellaneous information (statistical information, references, variables stored...)
- In addition, routines to convert EGSnrc files to this format are provided.
- More information at http://www-nds.iaea.org/phsp

IAEA phase-space file interface in Geant4

- A stable interface to read and write IAEA phase-space files has been developed to be used in Geant4 applications.
- "Stable" means that this interface is not affected by internal changes in the IAEA format that may happen in the future.
- The files involved are:
 - The IAEA routines published on their web site.
 - Our new classes:
 - G4IAEAphspReader
 - Derived from *G4VPrimaryGenerator*.
 - G4IAEAphspWriter
 - Just a singleton class.
 - Optional class for analysis with ROOT.

• IAEA Routines:

iaea_config.h: declares types of variables.

iaea_header.h(.cc): defines a 'struct' which manages the *.IAEAheader file.

- iaea_phsp.h(.cc): defines all the methods to get/store the information from/to the IAEA phase-space files.
- **iaea_record.h(.cc):** this is an structure that defines the format used to store the information.
- utilities.h(.cc): miscellaneous definitions and functions.

Available at <u>http://www-nds.iaea.org/phsp</u>

• Writer class properties:

- Singleton. A messenger class can be associated easily.
- Extra integer variable of type "incremental history number" is stored by default for statistical purposes.
- Compatible with executions composed by several runs.
- To use it:
 - Three user action classes are needed: <u>UserRunAction</u>, <u>UserEventAction</u> and <u>UserSteppingAction</u>.
 - Call <u>SetZStop(double)</u> method for each phase space plane definition in <u>UserRunAction</u> constructor.
 - <u>BeginOfRunAction()</u>, <u>EndOfRunAction()</u>,
 <u>BeginOfEventAction()</u> and <u>UserSteppingAcion()</u> methods must be invoked in their suitable user action class.

Reader class properties:

- Particles sharing the same original history are created in the same event in Geant4 to do statistical analysis properly.
- Therefore, an event in the Geant4 simulation corresponds to a complete history and not only to a given particle.
- Options provided for the user:
 - Divide the phase-space file in chunks (parallel runs).
 - SetTotalChunks(G4int)
 - Choose a certain chunk.
 - SetChunk(G4int)
 - Particle recycling is considered as well.
 - SetTimesRecycled(G4int)

• Spatial transformations:

– In global frame can be done using these methods:

SetGlobalPhspTranslation(const G4ThreeVector &); SetRotationX(G4double alpha); SetRotationY(G4double beta); SetRotationZ(G4double gamma); SetRotationOrder(G4int order);

order is a 3-digit integer number which combines 1, 2 and 3, without repetitions, meaning 1 = X, 2 = Y and 3 = Z axis.
 For example: order = 132 means first rotate around X, and second around Z axis.

• Isocentric rotations:

SetIsocenterPosition(const G4ThreeVector &); SetCollimatorRotationAxis(const G4ThreeVector &); SetCollimatorAngle(G4double); SetMachineRotationAxis(const G4ThreeVector &);

SetMachineAngle(G4double);

– Configured to rotate the collimator first.

• How to use the reader class:

🖹 *ExN01PrimaryGeneratorAction.cc 🛛 🖾

#include "ExN01PrimaryGeneratorAction.hh"
#include "G4Event.hh"
#include "G4IAEAphspReader.hh"
#include "globals.hh"

ExN01PrimaryGeneratorAction::ExN01PrimaryGeneratorAction()

G4String fileName = "test"; IAEAphsp = new G4IAEAphspReader(fileName,0);

// Here the user must use all the Set methods
// For example:

G4ThreeVector globalPos(0.,0., -30.*cm);

IAEAphsp->SetGlobalPhspTranslation(globalPos);
// IAEAphsp->SetRotationY(90.*deg);

```
// G4ThreeVector isocenter(0., 0., 1.*m);
// IAEAphsp->SetIsocenterPosition(isocenter);
```

```
G4double colimAng = 90.*deg;
G4ThreeVector colimAxis (0., 0., 1.);
// G4double machineAng = 90.*deg;
// G4ThreeVector machineAxis(0., 1., 0.);
//
IAEAphsp->SetCollimatorAngle(colimAng);
IAEAphsp->SetCollimatorRotationAxis(colimAxis);
// IAEAphsp->SetMachineAngle(machineAng);
// IAEAphsp->SetMachineRotationAxis(machineAxis);
```

ExNOlPrimaryGeneratorAction::~ExNOlPrimaryGeneratorAction()

delete IAEAphsp;

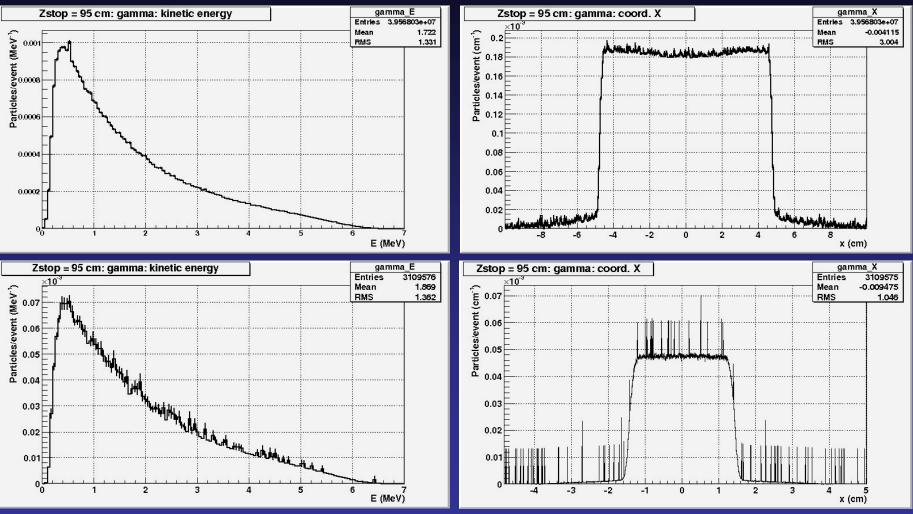
69

70 void ExNOlPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
71 {

72 IAEAphsp->GeneratePrimaryVertex(anEvent);

73 G4cout << "EVENT ID = " << anEvent->GetEventID() << G4endl;</pre>

74 }

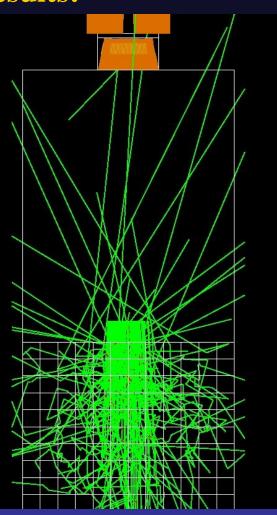

In UserPrimaryGeneratorAction constructor the G4IAEAphspReader* pointer must be created, and all the 'Set' methods the user needs also must be invoked.

'Set' methods can be associated to a messenger class as well.

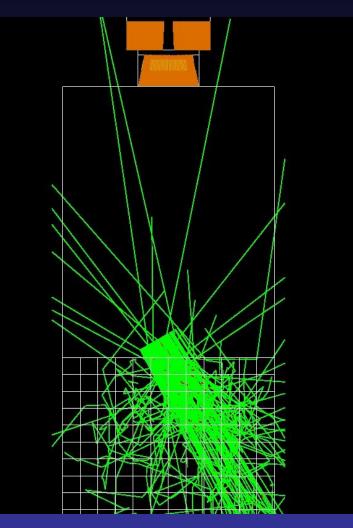
In GeneratePrimaries method the -user only have to invoke GeneratePrimaryVertex.

IAEA phase-space file interface in Geant4

• Results:

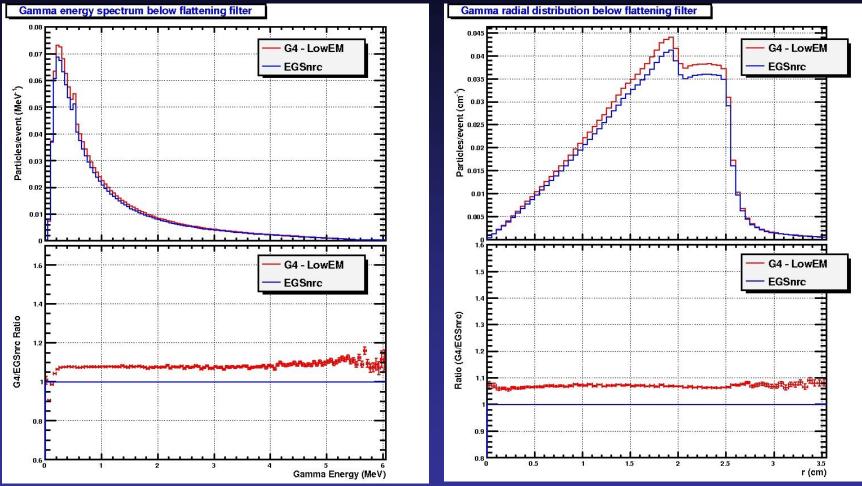


Phase space files taken from the IAEA database.


14th Geant4 Collaboration and Users' Workshop

IAEA phase-space file interface in Geant4

• **Results:**



Gantry rotated 30 deg

Geant4 Simulation of a Siemens Primus Linac

• Results. EGS vs. Geant4 PSF comparison:

To be repeated with the new LowEnegy EM classes!

- An interface to read and write phase space files in IAEA format has been developed.
 - Easy to use and stable against future changes in the IAEA code.
 - Allows the possibility of creating associated messenger classes to modify the data members through a macro file.
 - Respects the correlations between particles, so it allows the user to do a proper statistical analysis.
 - Possibility of dividing the phase-space files into chunks to perform 'parallel runs'.
- Publication about to be submitted.
- Available to the community in short time.

And that's all...

THANKS FOR YOUR ATTENTION