
Physics tables and multi-core

J. Apostolakis



Motivation

• Limited reuse of memory in Multi-Processing
– A forked process shares all pages of memory 

which read-only  (called ‘Copy-on-write’=COW)
– With Geant4 less than 30% can be shared– With Geant4 less than 30% can be shared

• Leading reasons:
– Caching in physics tables
– Replicas’ copy numbers.

• With simple changes could increase reuse



Inside a Physics Table

Physics Vector (material 1)

Physics Vector (material 2)

Physics Vector (material 3)

Physics Table



Inside a Physics Vector

Energy VectorEnergy Vector

Value VectorValue Vector

Last bin
Last value
Last 2nd Deriv.

Scalars

2nd Derivative Vector2nd Derivative Vector

Cache: Read/Write Read-only after filling (initialization)

3 doubles Typically 70-150 double values each

Typically created in consecutive areas of the heap. The result is:
By writing the 3 doubles (cache) a process creates copy of page(s) which 

containing ~ 300 doubles 



Multiprocessing and ‘timing’

• BeamOn is called
• Initialization of geometry
• Initialization of physics processes
• First event is processed• First event is processed
• Worker processes (or threads) are created 

• Fork waits until the physics tables are 
initialized!



Requirement for multiprocessing

• Use separate areas of memory
– One for the scalars (which are rewritten) 
– A different one for the vectors

• Fork waits until the tables are initialized & • Fork waits until the tables are initialized & 
shared.



Complications?

Other large arrays used by physics processes
• Static arrays in Brems, pair production, 

Goldsmith-Saunderson MSc
• C-arrays in• C-arrays in

– Hadron Elastic (no caching)
– CHIPS Elastic (?caching?)



Outcome

• Revision of design of physics vector
– To separate areas of memory for scalars and 

vectors
– Hisaya was present – he maintains phys. vector– Hisaya was present – he maintains phys. vector


