Physics tables and multi-core



Motivation

e Limited reuse of memory in Multi-Processing

— A forked process shares all pages of memory
which read-only (called ‘Copy-on-write’=COW)

— With Geant4 less than 30% can be shared

* Leading reasons:
— Caching in physics tables
— Replicas’ copy numbers.

* With simple changes could increase reuse



Inside a Physics Table

Physics Vector (material 1)

Physics Vector (material 2)

Physics Vector (material 3)




Inside a Physics Vector

Scalars
Cache: Read/Write Read-only after filling (initialization)
3 doubles Typically 70-150 double values each

Typically created in consecutive areas of the heap. The result is:
By writing the 3 doubles (cache) a process creates copy of page(s) which
containing ~ 300 doubles



Multiprocessing and ‘timing’

BeamOn is called

nitialization of geometry

nitialization of physics processes

First event is processed

Worker processes (or threads) are created

Fork waits until the physics tables are
initialized!



Requirement for multiprocessing

* Use separate areas of memory
— One for the scalars (which are rewritten)

— A different one for the vectors

 Fork waits until the tables are initialized &
shared.



Complications?

Other large arrays used by physics processes

 Static arrays in Brems, pair production,
Goldsmith-Saunderson MSc

* C-arraysin
— Hadron Elastic (no caching)
— CHIPS Elastic (?caching?)



Outcome

* Revision of designh of physics vector

— To separate areas of memory for scalars and
vectors

— Hisaya was present — he maintains phys. vector



