

Hadronic Validation and Testing

(Parallel Session VII; October 20, 2009)

Talks Presented

- ☐ Testing & Improvement of Inelastic Cross Sections
- ☐ Hadronic Generator Tests for Spallation & Low Energies
- Validation Effort at FNAL
- ☐ Geant4 Hadronic Validation Framework
- ☐ Discussion on New Validation Suites (if any)

14th Geant4 Workshop, Catania October 22, 2009

Presentation 1 (M. Kosov)

Testing and Improvement of Inelastic π-A, K-A, pbar-A Cross Sections:

- \Box The inelastic cross sections improved for cross section with π^{\pm} , K[±] and pbar induced interactions.
- ☐ Hyperon-nuclear reactions are still to be covered.
- Improvement is seen in π[±]A cross section w.r.t.
 Barashenkov cross section for deuterium target
- ☐ Clear improvement w.r.t. Gheisha cross section for K[±]A and pbar-A inelastic interactions
- ☐ The updated inelastic cross section is almost ready
- ☐ Code will be available for usage of other hadronic models in Geant4.

Presentation 2 (V. Ivantchenko)

Hadronic generator tests for spallation & low energies:

- ☐ Test30 is used routinely for testing low energy data (up to 3 GeV) with p/n beams on nuclear targets also used in the IAEA spallation benchmark.
- ☐ Test35 has been developed and used to validate against HARP data recent addition is the use of forward data.
- □ IAEA spallation benchmark includes double differential distribution for pions, nucleons, light charged ions and isotope production cross sections with n/p beam on a number of nuclear targets between 20 MeV and 3 GeV
- ☐ The tests indicate some problems in the generators
- Nevertheless Geant4 hadronic models (Bertini and Binary) give competitive results in this benchmark evaluation.

Presentation 3 (S. Banerjee)

Validation effort at Fermilab:

- We now have a validation package of hadronic models in the form of test47 for the intermediate energy region.
 - Inclusive proton/neutron productions in π[±]/p induced interactions between 1.4-7.5 GeV/c beam momenta are best explained by Bertini and QGS-Bin model
 - p-A data at 14.6 GeV/c are best explained by FTF-bin model
- □ The basic infrastructure for stopping particles is provided in test48 with the application software, ASCII data files, analysis Root macro and a minimal README.
 - Stopping code for CHIPS is the best at the moment but still cannot explain π^- data for light nuclei

Presentation 4 (J. Yarba)

Geant4 Hadronic Validation Framework:

- □ Requirement document is discussed within the G4 hadronic group and approved. It is serving as a guidance: http://home.fnal.gov/~yarba_j/G4-HAD-Validation-Papers/G4VRequirements.doc
- ☐ System design is outlined which include:
 - Resources to be used
 - Workflow and applications
 - Technology choices proposed (need Grid for some of the tests)
 - Small-scale prototype building based on test47
- □ Design proposal will be finalized shortly, and presented to the group for review. Draft version exists:

 http://home.fnal.gov/~yarba_j/G4-HAD-Validation-Papers/g4val_exec.pdf
- □ Developer aspects were discussed. Developer requirements are included in the requirement document and this will be included in the design document.

Discussion (D. Wright)

Scope of new validation suites:

- Need consolidation of stopping muon validation (already a test exists)
- □ Validation of low energy LEpn and LEpp models
- □ Several validation works are missing mainly because lack of data – in flight validation to be done for kaon, anti-proton, hyperon induced interactions.