Developments in INCL/ABLA (Oct'09)

Pekka Kaitaniemi pekka.kaitaniemi@gmail.com

Helsinki Institute of Physics CEA/Saclay

October 19th, 2009 Revision: c5fa648ab4f5b7bfe25f3290c98413de1549e499

- INCL4 translation
 - Light ion projectile support

- 2 INCL redesign
 - Goals
 - Design principles
- Status and outlook

INCL intra-nuclear cascade and ABLA de-excitation

Projectile $p, n, \pi,$

> deuteron, triton, He3, alpha

150 MeV - 3 GeV Energy range Target nuclei Carbon - Uranium

Table: Model validity range

Interactions (isospin dependence):

$$NN \longrightarrow N\Delta \qquad N\Delta \longrightarrow NI$$

$$N\Delta \longrightarrow NA$$

No N $\Delta \longrightarrow \Delta\Delta$

 $\Delta = \Delta 33 \text{ (1232 MeV)}$ (No other baryonic resonances)

No $\pi N \longrightarrow \pi N$

No $\pi N \longrightarrow 2\pi N$.

but $\Delta \longrightarrow \pi N$

Physics list QGSP_INCL_ABLA.

• INCL tracks particles (p, n, π)

 Δ) and their binary collisions.

 Extended projectile support up to Carbon.

Use-cases and implementation

Use-cases:

- Treatment of tumors by using light ion beams
- Radioprotection of manned spacecrat irradiated by cosmic rays
- Damage to spacecraft electronics

Implementation:

- Projectile consists of A nucleons
- Projectile nucleons that don't hit the nucleus form a "spectator nucleus" (de-excitation using Fermi break-up)
- Target treated using either ABLA or Fermi break-up

INCL4.3: Carbon-12 @ 400 MeV/nucleon

INCL4.3: Fragmentation, comparison against Fluka

Alfredo Ferrari, NUFRA2007

Alfredo Ferrari, NUFRA2007

Availability in Geant4 and future plans

Carbon projectile support in INCL will be available for Geant4 9.3 release.

Short term:

- Various approaches for the beam spectators (excitation energy at large impact parameters).
- More symmetry between the target (light) and the beam
- Tests on complex systems (transport part with GEANT4 and Hadrontherapy)

Long term:

- Strong focus on improving the light ion support
- A more radical transformation of the code is needed (ion-ion part to be done by D. Mancusi)...

7 / 11

Goals

INCL OO redesign goals

Goals:

- Only one INCL physics model
- Develop the next generation of the INCL codebase
- Modularize design, make the system extensible
- Get rid of old cruft
- Better (framework) support for nucleus-nucleus collisions (D. Mancusi, possibly starting in the summer of 2010)

Traditionally INCL has been a standalone code and we have provided interfaces to transport codes:

- C++ translation and Geant4
- FORTRAN version and LAHET

INCL++ initialization

• Nucleus: a collection of nucleons
 G4INCL::Nucleus *theNucleus = new G4INCL::Nucleus(6,
 12);
 theNucleus->initializeParticles();

 Propagation model: predicts the collisions (a.k.a. avatars) between particles and transports the particles inside the nucleus.

```
G4INCL::Propagation::IPropagationModel *pm = new G4INCL::Propagation::StandardPropagationModel();
```

= new G41NCL::Propagation::StandardPropagationModel()

 Assign the nucleus to the propagation model: pm->setStoppingTime(70.0); pm->setNucleus(theNucleus);

INCL++ avatar processing loop

• Get the avatar with the smallest time and propagate particles to that point in time.

```
G4INCL::IAvatar *avatar = pm->propagate();
```

Channel is responsible for calculating the outcome of the selected avatar:

```
G4INCL::IChannel *channel = avatar->getChannel();
```

Final state tells what changed:

```
G4INCL::FinalState *finalState =
channel->getFinalState();
```

- So now we must give this information to the nucleus: theNucleus->applyFinalState(finalState);
- If stopping time has not yet been reached, return back to step 1.

Conclusion and outlook

The new code is validated against the original FORTRAN by checking the values of the internal INCL variables

- Particle positions
- "Avatar" times
- Found collisions

The avatar search routine shown before (the core of INCL) works.

Next milestones:

- Adding NN cross sections
- Realistic elastic NN collisions

Produce a simplified cascade model prototype with the new code early 2010. The code should be able to do more realistic physics by next summer.