

25th International conference on Magnet Technology(MT25)

RAI - Amsterdam

August 27 - September 1, 2017

25th International Conference on Magnet Technology

Tue-Af-PI3-03 **Development of Superconductors**

at Furukawa Electric Group

Aug. 29th , 2017

Furukawa Electric Co., Ltd. Hisaki Sakamoto

Outline

FURUKAWA ELECTRIC

- History of Superconductor Development at Furukawa Electric
- Drivers for Superconductor Development
- Sperconductors at Furukawa Electric Group
 - NbTi Wire and Cable
 - > Nb_3Sn Wire and Cable
 - > 2G-HTS(REBCO) Tape
- HTS Applications
 - HTS Persistant Current System
 - Superconducting Flywheel Energy Storage System
- Summary

50 years of Superconductor Development

Year	Items	
1967	Start development of Superconductor	
1968	Start production and distribution of NbTi Superconductor	
1970	Start production and distribution of Superconducting Magnet	
1972	Development of Bronze-processed multifilamentaary Nb ₃ Sn and V ₃ Ga superconductor	
1974-	Participated worldwide projects with superconducting technology Fusion : LCT, Tore Supra, MFTF-B, ITER Accelalator : Tevatron, Tristan, Hera, RHIC, SSC, LHC	
1983	Superconductor plant(600m ²)	
1984	Funded Furukawa Oxford Technology, product and distribute superconducting magnets for MRI	
1987	Start development of High-Tc superconductor	
1988-	Participated domestic projects with superconducting technology Superconducting Generator, HTS wire, SMES, LHD, Superconducting Ring Cyclotron, J-PARC	
1990	New superconductor plant (6,000m ²)	
1998	Received order of 100 tons of NbTi rutherford type cable for CERN/LHC	
2003	Paid in full of the cable for LHC, received Golden Hadron award.	
2008	Received orders of NbTi and Nb ₃ Sn cables for JT60	
2012	SuperPower Inc. joined Furukawa Electric Group	
Now	Manufacturing Nb ₃ Sn Cable for ITER Development of High-Jc type Nb ₃ Sn wire	

Drivers for the Superconductor Development **ELECTRIC**

Large projects enhanced wire performance, quality and capacity.

- NbTi : SSC, LHC
- Nb₃Sn : ITER, HL-LHC, FCC
- 2G-HTS : ?

LHC (from CERN HP)

- History of Superconductor Development at Furukawa Electric
- Drivers for Superconductor Development
- Sperconductors at FEC Group
 - NbTi Wire and Cable
 - > Nb_3Sn Wire and Cable
 - > 2G-HTS(REBCO) Tape
- HTS Applications
 - HTS Persistant Current System
 - Superconducting Flywheel Energy Storage System
- Summary

History of NbTi Wire Development

FURUKAWA ELECTRIC

Furukawa delivers various type of NbTi Superconductors

Medical

NbTi round wire for MRI

High Energy Physics

Rutherford type NbTi cable

Aluminum stabilized NbTi Cable

NbTi Cable for generator

NbTi for Si Single Crystal Pulling Apparatus

NbTi Rutherford Cable for LHC

FURUKAWA ELECTRIC

FURUKAWA ELECTRIC

- History of Superconductor Development at Furukawa Electric
- Drivers for Superconductor Development
- Sperconductors at Furukawa Electric Group
 - NbTi Wire and Cable
 - > Nb_3Sn Wire and Cable
 - > 2G-HTS(REBCO) Tape
- HTS Applications
 - HTS Persistant Current System
 - Superconducting Flywheel Energy Storage System
- Summary

Development of Nb₃Sn Strand for ITER-CS

FURUKAWA ELECTRIC

Development of Nb-rod method Cu-Nb reinforced Nb₃Sn wires HFLSM

FURUKAWA ELECTRIC

Mon-Af-Po1.08-07 Sugimoto et. al

Kumakura, S. Hanai, H. Tsubouchi, M. Sugimoto, and I. Inoue, "Upgrade Design to a Cyogen-Free 20-T Superconducting Outsert for a 47-T Hybrid Magnet," IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 4300304, Jun. 2013.

Advantage of Nb-rod-method Cu-Nb reinforced Nb₃Sn strand

- Superior mass productivity with Nb-rod-method Cu-Nb
- Diameter of Nb rod, Spacing, Volume ratio is the Key to control the properties.
- Higher $I_{\rm c}$ under the large axial tensile stress
- High RRR (> 100).

600

Nb-rod-method Cu-Nb reinforced Nb₃Sn FURUKAWA Rutherford cables for React-and-Wind Processed wide-bore high magnetic field coils

Cross-section of the Rutherford type cable

Item	Parameters
Number of strands	16
Dimensions	$6.45^{+0.015/-0.05}\text{mm}^{\text{w}}x1.53^{\pm0.05}\text{mm}^{\text{t}}$
Cabling pitch/direction	$65^{\pm 10}$ mm / Right hand helix
Insulation	E-glass tape
Critical current	>1,900A @4.2K, 12T, 300MPa
RRR	>80

/_{op}=851 A, 13.8 T, 5.9 K, 251 MPa

25T cryogen-free superconducting magnet at Tohoku Univ.

Improvements of Cu-Nb/Nb₃Sn wires

MAIN PARAMETERS OF CU-NB/NB ₃ SN WIRES					
Design	New		Previous		
Wire	H-Jc	REC	25-CSM		
Dimension (mm)	φ0.80	1.13 ^t x 1.7 ^w -0.3 ^R	φ0.80		
Filament dia. (µm)	3.0	3.2	3.3		
Twist pitch (mm)	24	50	24		
Bronze	Cu-15.7wt%Sn -0.3wt%Ti		Cu-14wt%Sn -0.2wt%Ti		
Sn diffusion barrier	Nb		Ta		
Cu/Cu-Nb/non-Cu (%)	30 / 20 / 50		20 / 35 / 45		
Superconductor	Bronze- processed Nb ₃ Sn				
Reinforcement	Nb-rod-method Cu-20vol%Nb				

High J_c type round wire

Rectangular type wire

- The appropriate pre-bending treatment enable the Cu-Nb/Nb₃Sn wires to enhance not only superconductive performance at cryogenic temperature, but also mechanical performance for R&W process at room temperature.
- The Cu-Nb/Nb₃Sn wires are able to be designed to optimize superconducting properties according to the target application.

Development of high Jc type Nb₃Sn wire FURUKAWA

Motivation

- Jc of Bronze processed wire is limited by Sn content in bronze matrix.
- High Jc type wire is needed to respond future demand such as FCC.

Process	Bronze	Internal Tin / Nb Tube
Sn source	Δ	0
Non-Cu Jc	Ο	0
Hys. Loss	0	Δ
Uniformity	0	0
Piece Length	0	Ο

Milestone at the end of FY2019

- Non-Cu Jc at 4.2K, 16T: 1,500 A/mm²
- Piece length : 5,000 m

- History of Superconductor Development at Furukawa Electric
- Drivers for Superconductor Development
- Sperconductors at Furukawa Electric Group
 - NbTi Wire and Cable
 - Nb₃Sn Wire and Cable
 - > 2G-HTS(REBCO) Tape
- HTS Application
 - HTS Persistant Current System
 - Superconducting Flywheel Energy Storage System
- Summary

2G-HTS(REBCO) wire

FURUKAWA ELECTRIC

TIL

IBAD-MOCVD based REBCO wire on Hastelloy® substrate with artificial pinning

- AP (Advanced Pinning) with enhanced in-field performance for B//c, targeting at coil applications such as high-field magnets, SMES, motors/generators
- CF (Cable Formulation) for cables, transformers, FCL
- $I_c(77K, s.f.)/12mm = 400-600A$, piece length = up to 500m.
- Variations in width (2-12mm), substrate thickness (30, 50 or 100µm) Ag thickness (1-5µm), Cu thickness (10-115µm), and insulation
- Bonding conductors : 2x2mm, 2x4mm, 2x12mm (face to face / back to back)

Improved Je demonstrated with 30µm tapes

Engineering current density at 4.2 K vs. applied field for 30 um and 50 um ReBCO tapes with 7.5% Zr

Measured at NHMFL

Recent progress of SCS12030 AP wire CLECTRIC

- Piece length : 515m
- Transport Ic(ave)=525A, Ic(min)=515A

CORC[®] wires using SuperPower tapes

16 superpower tapes wound helically

- Copper core: 2.2 mm diameter
- 2 mm wide tapes with 30 µm substrate
- 6 mm twist pitch with partially transposed tapes for low AC loss
- Wire outer diameter: 3 mm
- Terminal diameter: 6.35 mm
- Nominal wire I_c: > 1,000 A (77 K)

Applications

- High field magnets
- Accelerator magnets
- Fusion magnets
- High power density transmission

High magnetic field critical current density obtainable by increasing wire diameter and decreasing substrate thickness

22/28

- History of Superconductor Development at Furukawa Electric
- Drivers for Superconductor Development
- Sperconductors at Furukawa Electric Group
 - NbTi Wire and Cable
 - > Nb_3Sn Wire and Cable
 - > 2G-HTS(REBCO) Tape
- HTS Applications
 - HTS Persistant Current System
 - Superconducting Flywheel Energy Storage System
- Summary

HTS Persistent Current System

- FEC has successfully developed the joint technology with a resistance of around $10^{-12}\Omega$ and PCS using REBCO tape.
- Performance of the System has investigated by Tohoku Univ.

Mon-Af-Po1.09-13 Takahashi et. al

Magnetic field decay behavior of a REBCO coil in a persistent current operation[1]

кевсо таре	
Туре	SuperPower® 2G-HTS SF6100-AF
Tape width / thickness (mm)	6/0.1
Substrate thickness (µm)	100
Superconductor thickness (µm)	1
Silver overlayer thickness (µm)	2
REBCO coll	
Coil type	Double pancake
Number of turns	80 × 2
Tape length (m)	14 × 2
Inner / outer diameter (mm)	44 / 68
Inductance (mH)	1.54
Reinforcement	SUS316 tape (50 µm)
REBCO PCS	
Tape length (cm)	50
Off resistance (m Ω)	> 50
Heater	Manganin wire (3 m)
REBCO superconducting jyoint	
→ EUCAS 2017 (A. Nakai, et al., 4LP-	4-4)

Schematic circuit diagram.

[1]

News release of Furukawa Electric Co., Ltd., http://www.furukawa.co.jp/en/release/2016/kenkai_160427.html

This work is supported by AMED

Performance of a HTS Persistent Current System for REBCO Pancake Coil

FURUKAWA ELECTRIC

Magnetic field decay behavior of the REBCO coil in the persistent current operation at 20 K in the self field.

- No degradation was observed in 9 months.
- The decay rate of 170 A after 5 days was evaluated to be 1.7 ppm/h.

V–I characteristics obtained from the field decay curves.

Curve for 1 T shows a typical behavior around the I_c.

 $I_c \approx 90 \text{ A} (1 \,\mu\text{V criterion})$

Voltages in 0 T show no systematic current dependence.

Magnetic field decay behavior of the REBCO coil in the persistent current operation at 20 K in 1 T.

- Magnetic fields decay rapidly compared to ones in 0 T.
- The decay rate of 170 A after 1.5 days was evaluated to be 1.3 × 10³ ppm/h.

Excitation process dependence of the magnetic field decay behavior.

Decay behavior is changed by the excitation process.

Control of the shielding current is more important for improvements for the magnetic field stability.

Superconducting Flywheel Energy Storage System(FESS)

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2017

26/28

Furukawa Electric Group

- Has 50 years of Experience on Superconductor development.
- Distributes of Wide Range of Superconductors, such as NbTi, Nb₃Sn and 2G-HTS.
- Will contribute the progress of superconducting applications.

Thank you for your attentions !!

