

25<sup>th</sup> International Conference on Magnet Technology

RAI - Amsterdam August 27 - September 1, 2017



### Advanced superconductors developed at WST

Jianwei Liu

September 29<sup>th</sup> 2017, Amsterdam, The Netherlands

Western Superconducting Technologies Co., Ltd.





February 1965































# Superconductor Family of WST

### LTS



NbTi NbTi/CuNi

WIC

IT Nb<sub>3</sub>Sn

Bronze Nb<sub>3</sub>Sn

Nb<sub>3</sub>Al

HTS



 $MgB_2$ 



**Bi-2212** 

# Superconductor Family of WST

### LTS



NbTi NbTi/CuNi

WIC

IT Nb<sub>3</sub>Sn

Bronze Nb<sub>3</sub>Sn

Nb<sub>3</sub>Al





MgB<sub>2</sub>

Bi-2212



#### Improvement of $J_c$ and $T_{cs}$

- NbTi strand for high magnetic field:  $J_c=690A/mm^2$ ,  $T_{cs}=7.1$  K
- At 7 K, J<sub>c</sub>=600 A/mm<sup>2</sup>@3.6 T; J<sub>c</sub>=380 A/mm<sup>2</sup> @4.1T



#### Structure and performance

Uniform deformation of 12960 filament design. Filament diameter: 4µm



- $J_c$  achieves 2669 A/mm<sup>2</sup> in Cu5Ni matrix and 2985A /mm<sup>2</sup> in Cu0.5Mn matrix, at 5T, 4.2 K.
- $Q_h$  is decreasing with the diameter of NbTi filament. The lowest is 18 mJ/cm<sup>3</sup> with 2.8  $\mu$ m.





#### WIC solder technique

- Develope the lead-free solder technique of WIC wire for MRI magnet for GE and SIEMENS.
- **WIC** wire capability: minimal Cu/Sc of 4.5 and minimal dimension of 1.6X1.05 mm





#### **Improving n value**



#### Rod bar







#### Improvement for higher $J_{cn}$ and lower $Q_{h}$

Three routes: deformation optimization, Cu splits and reaction degree increase. Support CFETR, CRPP and ENEA for fusion after ITER.



With two Cu splits

Sn spacer + one Cu splits



#### Internal-tin Nb<sub>3</sub>Sn strand for fusion



#### Improvement for higher J<sub>cn</sub> and lower Q<sub>h</sub>



#### **Bronze Nb<sub>3</sub>Sn strand**



◆ Up to 450 °C, less Nb<sub>3</sub>Sn particles on the Nb surface.
◆ At 500 °C, Nb<sub>3</sub>Sn particles are easily grown.

50h 10h 400 °C 10h 50h 450°C 10h 50h 500°C



- Sn content in bronze is proportional to Nb<sub>3</sub>Sn pre-reaction.
- After 10 h, Sn content changed little and small Nb<sub>3</sub>Sn particles appeared.
- After 50 h, Sn content dropped and dense Nb<sub>3</sub>Sn particles created. Most for 500 °C.





#### **Performance improvement**



Three strands were manufactured to study the influence of filament diameter on  $J_c$  and influence of diffusion barrier on  $Q_h$ .





 $J_c$  increases with the reduction of filament diameter with the same bronze/Nb ratio, which can be explained by the full reaction of smaller filaments.

#### Influence of diffusion barrier



- Ta diffusion barrier is best to reduce Q<sub>h</sub> below 100 mJ/cm<sup>3.</sup>
- ◆Ta breaks the Nb<sub>3</sub>Sn ring and reduces hysteresis loss.
- ♦ A Nb<sub>3</sub>Sn ring formed inside of the Nb diffusion barrier leads to a highest hysteresis loss.



#### Jelly-roll process

The cassette-roller die (CRD) is necessary to the mechanical deformation process of the Nb<sub>3</sub>Al precursor for controlling their serious work hardening.





Preparation process of 18 filament  $Nb_3Al$  precursor wires

### Nb<sub>3</sub>Al wire



#### Rapid heating and quenching (RHQ) heat-treatment

**\mathbf{A}** RHQ heat-treatment process of reel-to-reel Nb<sub>3</sub>Al wires with a continuous increasing sintering current.





**\blacklozenge** Our aim is to develop the practical high performance Nb<sub>3</sub>Al superconducting wires, many efforts are still being ongoing.





# Superconductor Family of WST



#### HTS



MgB<sub>2</sub>



**Bi-2212** 



#### **Ex-situ and hot-extrusion method**

- Ex-situ route is regarded as suitable for kilometer  $MgB_2$  wires.
- with very fine filament, resulting in them with very low AC loss and be benefit of the application of cable, HEP accelerator and MRI.





#### **Deformation optimization**

 $\clubsuit$  Both rolling and drawing have been used to reduce the cross-section of MgB<sub>2</sub> wires after hot-extrusion.

 $\clubsuit$  Rolling process helps MgB<sub>2</sub> wire to deform more homogeneously.

◆The results suggest both the two methods are useful to make the practical kilometer ex-situ MgB<sub>2</sub> wires.



**Cross-section evolution by drawing** 

**Cross-section evolution by rolling** 

#### **Fabrication process**

• Bi2212 is currently the unique High- $T_c$  superconductor, that can be prepared into round wires by using the simple powder-in-tube (PIT) method.

• Bi2212 superiority:  $T_c$  of 85 K ,  $H_{c2}$  of more than 100 T, and  $J_e$  >500 A/mm<sup>2</sup> at 4.2 K and 30 T.

◆ Kilometer-grade Bi2212 round wire by PIT method.





#### **Bi-2212 round wires**

#### **Recent progress in powder and performance**

Significant improvement is anticipated by optimizing:

- Powder preparation technology
- Drawing parameter
- Overpressure, melting and solidification steps of heat-treatment



#### less and smaller hard particles in powder







# Summary



• WST has a long history of over 50 years in the R&D of superconducting materials.

- ♦ WST contributed 174 ton NbTi strand and 35 ton Nb<sub>3</sub>Sn strand for ITER.
- **LTS:** Continue the production of MRI wire.
- Pursuing higher performance strand for fusion and accelerators.
- Low cost, flexibility and efficient service.
- ♦ HTS: process improvement for long length and performance stability.



# **Thanks for your attention!**