Thin REBCO CORC Wires with Current Densities of 400-600 A/mm² at 4 K & 10 T

T. Mulder^{1,2}, J. Weiss³, D. van der Laan³, M. Dhallé and H.H.J. ten Kate¹

- ¹ CERN, Geneva, Switzerland
- ² University of Twente, Enschede, the Netherlands
- ³ Advanced Conductor Technologies, Boulder, Co, USA

Outline

- CORC Wires, Cables and Cable-In-Conduit Conductors
- Wire Performance and Outlook

CORC Racetrack Coil at CERN

Conclusions

CORC Wires

Advantages of CORC wires:

- Isotropic Bending
- Highly Flexible
- Internal Core Stabilized
- High current density

Applications of CORC wires:

- High-magnetic field magnets
- Fast ramp magnets
- Flexible bus bars and current leads

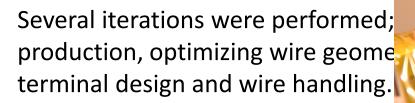
Measurements @ University of Twente

Aim of the tests:

- Demonstrate ease of use of CORC wires
- Demonstrate high performance of CORC wires
- Optimize wire production and handling

Setup at the University of Twente:

- Up to 10.5 T background magnetic field
- Current is generated with a SC transformer
- Mandrel has an outer diameter of 60 mm
- CORC wire is wound into a few-turn solenoid
- Forces can point inwards/outwards


Year	Tapes	Wire OD (mm)	Tape Width (mm)
2015	38	<u>7.6</u>	<u>4</u>
2016	24	4.5	<u>3</u>
2016	16	<u>3.0</u>	2
2016	<u>50</u>	4.1	2
2017	29	3.6	2

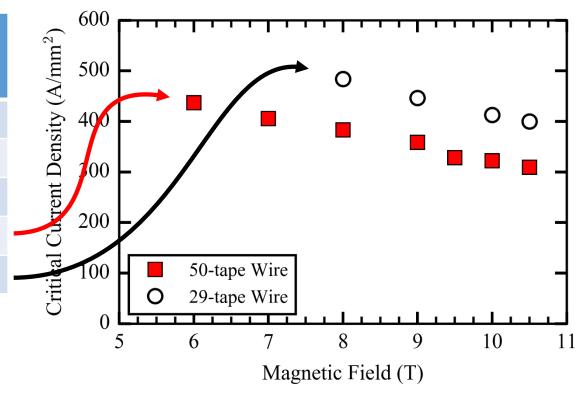
Several iterations were performed; optimizing wire production, optimizing wire geometry, improving joint terminal design and wire handling.

Year	Tapes	Wire OD (mm)	Tape Widt (mm)
2015	38	<u>7.6</u>	<u>4</u>
2016	24	4.5	<u>3</u>
2016	16	<u>3.0</u>	2
2016	<u>50</u>	4.1	7
2017	29	3.6	

Conclusion:

- 1. CORC cable was too thick
- 2. ReBCO tapes were too wide

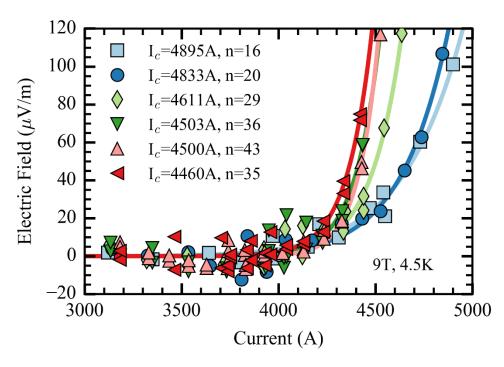
Year	Tapes	Wire OD (mm)	Tape Width (mm)
2015	38	<u>7.6</u>	<u>4</u>
2016	24	4.5	<u>3</u>
2016	16	<u>3.0</u>	2
2016	<u>50</u>	4.1	2
2017	29	3.5	2


Several iterations were performed; optimizing wire production, optimizing wire geometry, improving joint terminal design and wire handling.

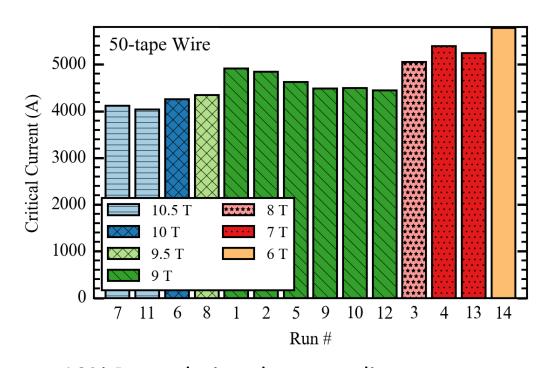
Year	Tapes	Wire OD (mm)	Tape Width (mm)
2015	38	<u>7.6</u>	<u>4</u>
2016	24	4.5	<u>3</u>
2016	16	<u>3.0</u>	2
2016	<u>50</u>	4.1	2
2017	29	3.5	2

Several iterations were performed; optimizing wire production, optimizing wire geometry, improving joint terminal design and wire handling.

Expected $J_c(10 \text{ T}, 4.2 \text{ K})$:


> 800 A/mm² for the 50-tape wire 700 A/mm² for the 29-tape wire

Both CORC wires performed worse than initial expectations.



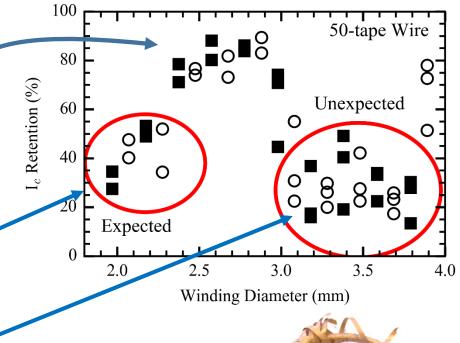
50 Tapes – 4.1 mm OD – CORC Wire

 Current sharing starts around the same current, therefore the n-value is pushed up.

- 10% Degradation due to cycling.
- Lorentz forces pointed inwards. Possible increasing the strain within the tapes over their limit.

Extracted Tape Measurements @ ACT

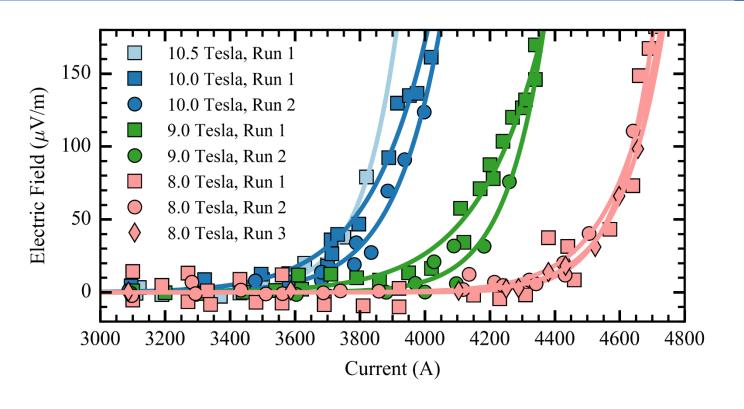
Results for the 50-tape CORC wire:

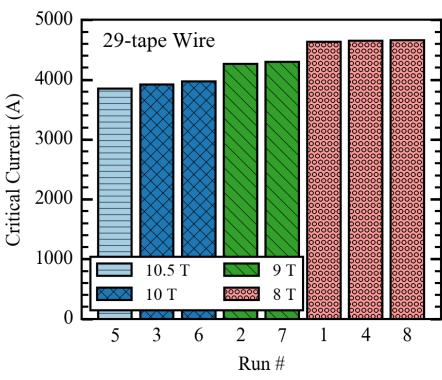

• I_c reduction for winding diameters below 2.4 mm

 I_c reduction at larger winding diameters (possible inadequate winding tension)

Overall I_c reduction of ~ 48%

(Courtesy of ACT)

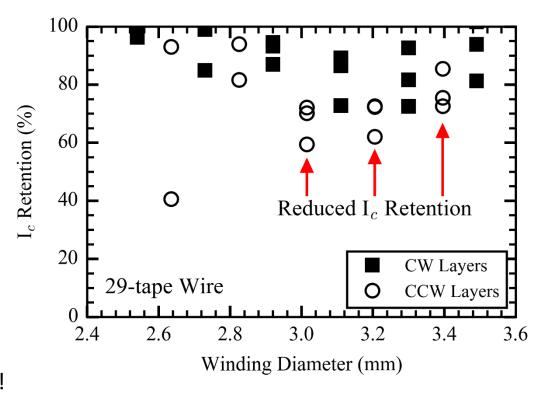

Tapes extracted for I_c measurements @ ACT



29 Tapes – 3.5 mm OD – CORC Wire

- No degradation due to cyclic loads.
- Lorentz forces point outwards.
- N-values of around 30

Extracted Tape Measurements @ ACT

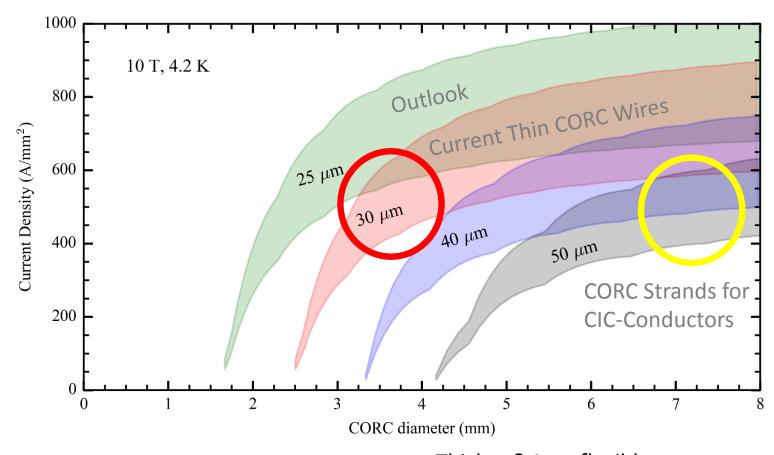

Results for the 29-tape CORC wire:

- No I_c reduction due to winding diameter
- Higher I_c retention in every other layer. Possibly the wire was torqued or the tape tension was varied during production.
- Overall I_c retention of ≈ 82%

412 A/mm² at 10 T and 4.2 K is lower than initially expected. Underperformance was largely due to low pinning.

Batch lift factors were tested at Florida State University. Typical lift factor is 2.7 at 10 T and 4.2K.

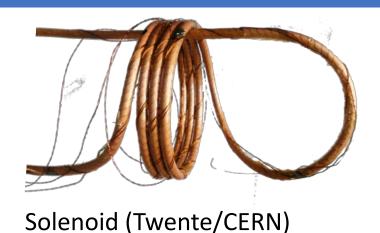
Lift factor of the tape batch used for the 29-tape wire was only 1.8!


UNIVERSITY OF TWENTE.

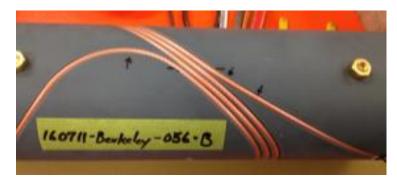
Combination of low lift factor and 82% I_c retention gives an expected I_c of 400 A/mm² at 10 T and 4.2 K, close to the measured 412 A/mm².

Outlook

CORC Wires are only made possible by the reduction in substrate thickness.


Another reduction from 30 to 25 µm provides another boost in current density!

Thicker & Less flexible ----->



CORC Demonstration Racetrack

CERN CORC Racetrack:

- Layout: 2 layers with each 8 turns
- Minimum bending diameter of 40 mm
- Coil inductance ≈ 50 µH, 0.38 T per kA
- I_c of around 4.5 kA at 10 T and 4.2 K

CCT (Berkeley)

CORC Wires for CERN Racetrack

Dummy Wire:

- 7.96 m & OD of 3.40 mm
- Testing of Coil winding
- Thermal cycling of the coil
- 7 layers of steel tapes + 2 SC tapes

CORC Wire:

- 7.96 m & OD of 3.45 mm
- 27 SCS-2030 tapes
- $I_c(77 \text{ K, SF}) = 1500 \text{ A}$

Conclusions

- ✓ Two CORC wires were tested at the University of Twente
- ✓ Critical current densities of 322 A/mm² and 412 A/mm² were measured
- ✓ Tape lift-factor has high impact on the performance of the CORC wires
- ✓ Extracted tape measurements localize degradation within the CORC wires
- ✓ Measurements provide valuable feedback to optimize wire production and handling
- ✓ 27-Tape CORC wire will be used for a CORC Racetrack Coil at CERN
- ✓ Research on CORC is ongoing, more CORC wires and CORC CICCs are expected!

UNIVERSITY OF TWENTE.

Wed. Morning Oral 21-02 11.00 @ Emerald Room MT25, Amsterdam, The Netherlands - 29/08/2017

Wed. Morning Oral 21-05 11.45 @ Emerald Room