Magnetization and Analysis of CORC, TWST, and Roebel Cables for HEP applications and Associated Error fields

Mike Sumption, M. Majoros, C. Kovacs, and E.W. Collings

Center for Superconducting and Magnetic Materials, MSE, The Ohio State University

Nijhuis and K. Yagotyntsev, The University of Twente

MT25 25th International Conference on Magnet Technology

M. Takayasu, MIT, PSFC W. Goldacker N. Long,

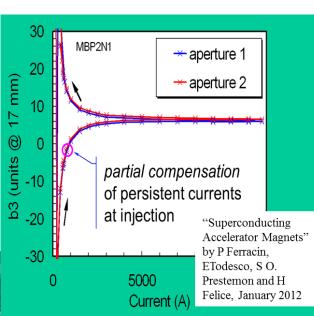
IRL

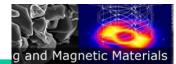
X. Wang. LBNL

CORC Samples: D. Van Der Laan Advanced Conductor Technologies and University of Colorado Twisted Strand: University of Houston

This work was supported by the U.S. Department of Energy, Office of Science, Division of High Energy Physics, under Grant DE-SC0011721.

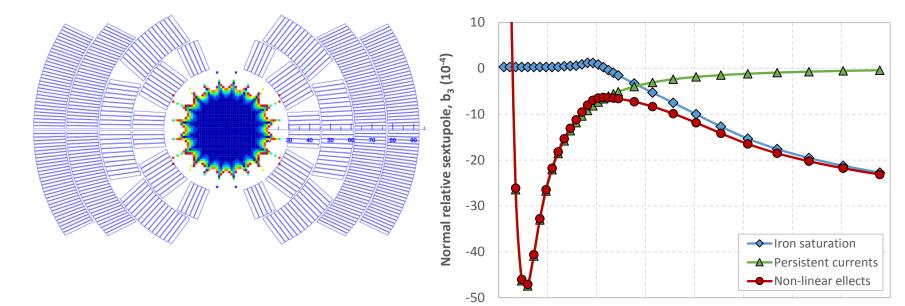
Outline of talk


- Motivation accelerator quality
- Comparison of accelerator and b3
- Expressions for Magnetization of Tape vs Cable
- Measurements and Analysis of Magnetization of various cable types
- Coupling -- Magnetization -- loss?



Why the focus on Magnetization? - its b3 and its change for accelerator magnets

Strand type	NbTi ⁽¹⁾	Nb ₃ Sn ⁽²⁾	Bi:2212 ⁽³⁾	YBCO	YBCO	
Cable type	Rutherford	Rutherford	Rutherford	TSTC	CORCTM	
Cable packing factor, λ_c	0.88	0.855	0.87 ⁽⁴⁾	0.56	0.58	This is based
Strand filling factor, λ_s	0.385	0.455	0.26	0.01 ⁽⁵⁾	0.01 ⁽⁵⁾	This is based
Layer CCD, $J_{c,inj}$, kA/mm ²	20.4	-	1.75	88 ⁽⁶⁾	88 ⁽⁶⁾	on an
Eng. CCD ^(/) , J _{e,inj} , kA/mm ²	7.85	-	0.455	0.88	0.88	estimation
Fil. (strand) size, d _{eff} ; µm	7	61	278	4000 ⁽⁸⁾	4000 ⁽¹⁰⁾	from Tape
J _{cable,inj} kA/mm ²	6.91	13.0	0.396	0.493	0.510	nom rupe
J _{cable,colb} kA/mm ²	0.704	0.855	0.348	0.244	0.232	
B _{b,coll} , T	8	15	20	20	20	
					Ľ	Weighted ave
b_3 , units ⁽¹¹⁾	3	41	19	330 ⁽¹²⁾	330 ⁽¹²⁾	
b_{3*} , units ⁽¹³⁾			37	99	99	Hybrid mag


Sample	<i>В</i> , Т	orientation	- <i>M</i> ₀ , kA/m	-M _{20min} , kA/m	ΔM _{20min} /M ₀ , %	∆b3, %
Bi:2212						
	1 T	⊥ _{axis}	15	12	20	20
	12 T	⊥ _{axis}	2.7	1.5	42	42
YBCO						
	1 T	<i>B//c</i>	991	906	9	9
	1 T	45°	933	811	14	14
	12 T	<i>B//c</i>	280	187	33	33
	12 T	45°	229	200	13	13

Cos theta coil MDP

Nb₃Sn RRP Conductor

0

2

Δ

6

A Zlobin, "15 T dipole design concept, magnetic design and quench protection", Presentation at the US MDP workshop Jan 2017

Department of Materials _ Science and Engineering

8

Bore field (T)

10

12

14

16

Canted cos theta Dipole

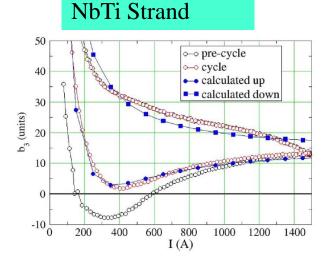
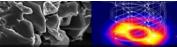


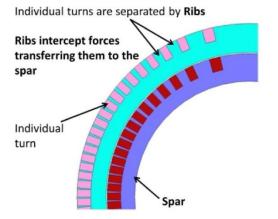
TABLE I CCT1 Magnetic Parameters

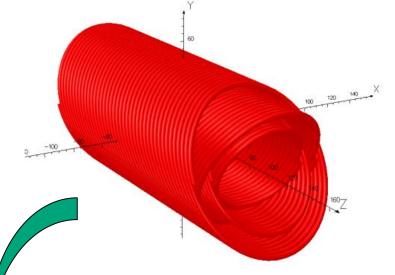
Symbol	Units	Value
Strand diameter (SSC outer)	mm	0.65
Strands per cable		8
Bare cable	mm	2.72x1.07
Insulated cable	mm	3.02x1.37
Cable keystone angle	Deg.	0
Channel size	mm	3.02x1.59
Clear bore dia.	mm	50.8
Number of layers		2
Layer1/2 radial spar thickness	mm	3.07
Between layers radial insulation	mm	0.25
Layer1/2 canted angle	Deg.	15
Layer 1/2 No. of turns		78/72
Layer 1/2 single turn length	mm	499/604
Mandrels length	mm	841.1
Axial pitch length	mm	7.60
Minimum rib thickness (mid-plane)	mm	0.38
Maximum rib thickness (pole)	mm	6.02

Fig. 11. Combined geometric and magnetization sextupole up to 1500 A.

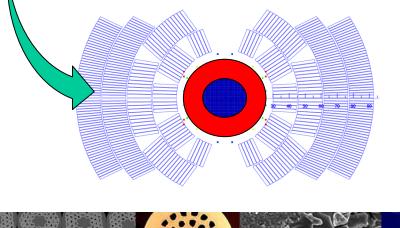

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 25, NO. 3, JUNE 2015

Test Results of CCT1—A 2.4 T Canted-Cosine-Theta Dipole Magnet


S. Caspi, L. N. Brouwer, T. Lipton, A. Hafalia Jr, S. Prestemon, D. R. Dietderich, H. Felice, X. Wang, E. Rochepault, A. Godeke, S. Gourlay, and M. Marchevsky

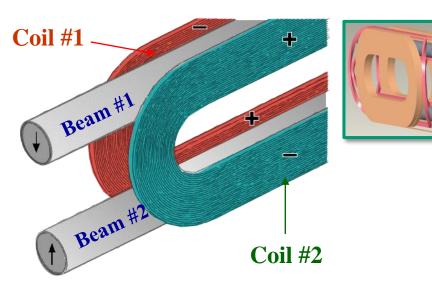


Center for Superconducting and Magnetic Materials



Canted Cos Theta dipole 2

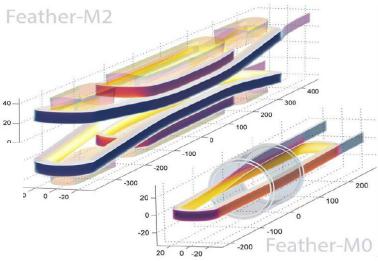
X. Wang, "REBCO accelerator magnet development: status and plans", Presented at the USMDP NAPA, Jan 2017


er for Superconducting and Magnetic M

X Wang of LBNL proposes to make a 4 layer canted cos dipole using YBCO cable

- As part of LBNL-OSU collaboration, Nb3Sn magnetization measurements and Bi:2212 magnetization data have been provided for error field calculations in other magnet designs
- This collaboration is expanded to include YBCO conductor and cable magnetization for magnets, and collaboration on error field determination
- If we consider for a moment the simplest case of an HTS insert in a background Nb3Sn magnet, then at injection, it may be reasonable to approximate field on CCT as a "uniform 1 T"
- Initial error estimates using biot savart (and a doublet approach) suggest significant b3 for CCT wound with YBCO cables, as expected extrapolating from CCT1 > 25 unit

A number of other designs and possibilities



Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

G. A. Kirby, J. van Nugteren, A. Ballarino, L. Bottura, N. Chouika, S. Clement, V. Datskov, L. Fajardo, J. Fleiter, R. Gauthier, L. Gentini, L. Lambert, M. Lopes, J.C. Perez, G. de Rijk, A. Rijllart, L. Rossi, H. ten Kate, (CERN), M. Durante, P. Fazilleau, C. Lorin (CEA), E. Härö, A. Stenvall, (TUT), S. Caspi, M. Marchevsky, (LBNL), W. Goldacker, A. Kario, (KIT)

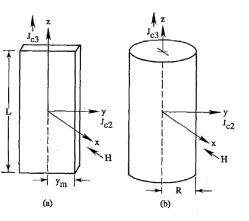
Ramesh Gupta, "Hybrid Configuration and BNL Activities", USMDP, 2017

1. Aligned block development HTS magnets, (bottom right) Feather-M0 ich detection development coil, (top left) Feather-M2 the EuCARD-2 five a standalone approaching accelerator field quality insert magnet.

What does the magnetization of HTS, esp YBCO, look like?

For round strands $- Nb_3Sn$, Bi2212, the simple rules are

1. For *B* perpendicular, $B >> B_p$


- $\Delta M = \frac{4}{3\pi} d_{eff} J_c$
- $B_p = \mu_0 0.8 J_c d_{eff}$

cylinders

Full field penetration

 $B_p = \mu_0 J_c a$

 $\Delta M = a J_c$

slabs

2. For B Perpendicular, $B \ll B_p$ No or nearly no
penetrationOnly true if B //
to thin edgeM = -2HM = -HM = -Hcylindersslabs

What does the magnetization of HTS, esp YBCO, look like?

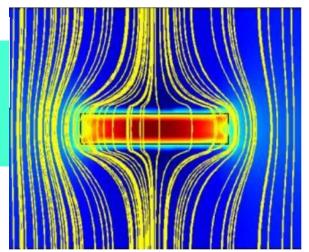
For flat strands with $B \perp tape$

1. For *B* perpendicular, $B >> B_p$

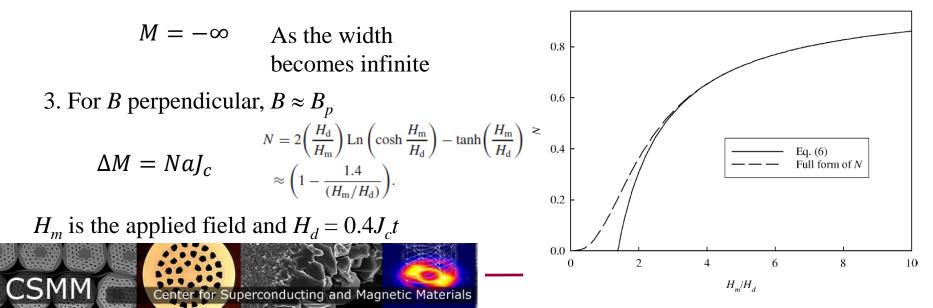
 $\Delta M = a J_c$

a is half width

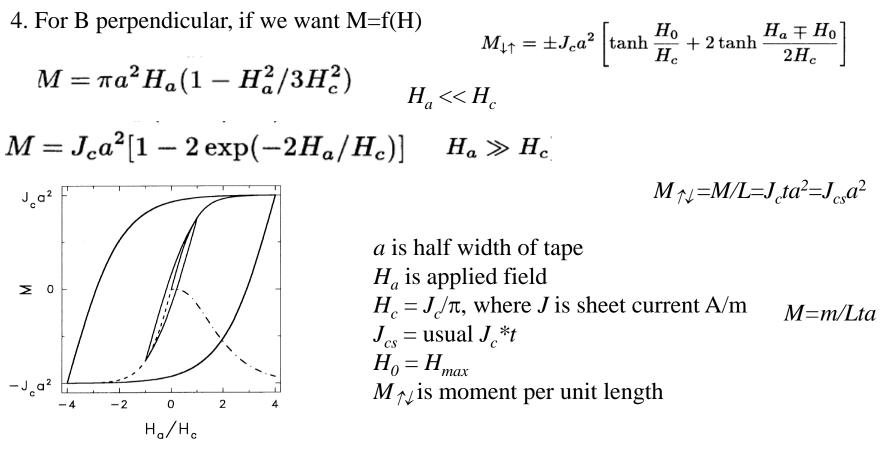
slabs


$$H_{\rm p} \approx J_{\rm c} \left(\frac{t}{\pi}\right) \left(\ln \frac{w}{t} + 1\right)$$

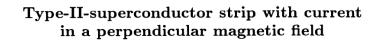
But, B_p for B_{\perp} slab much


cylinder or slab with B //

much lower than B_p for


slab

2. For *B* perpendicular, $B \ll B_p$


What does the magnetization of HTS, esp YBCO, look like?

PHYSICAL REVIEW B

VOLUME 48, NUMBER 17

1 NOVEMBER 1993-I

Ernst Helmut Brandt and Mikhail Indenbom*

Magnetization of a helical Tape or CORC cable in Saturation

In general, in full penetration,

 $Q_0 = 2\mu_0 H_0 J_c w$

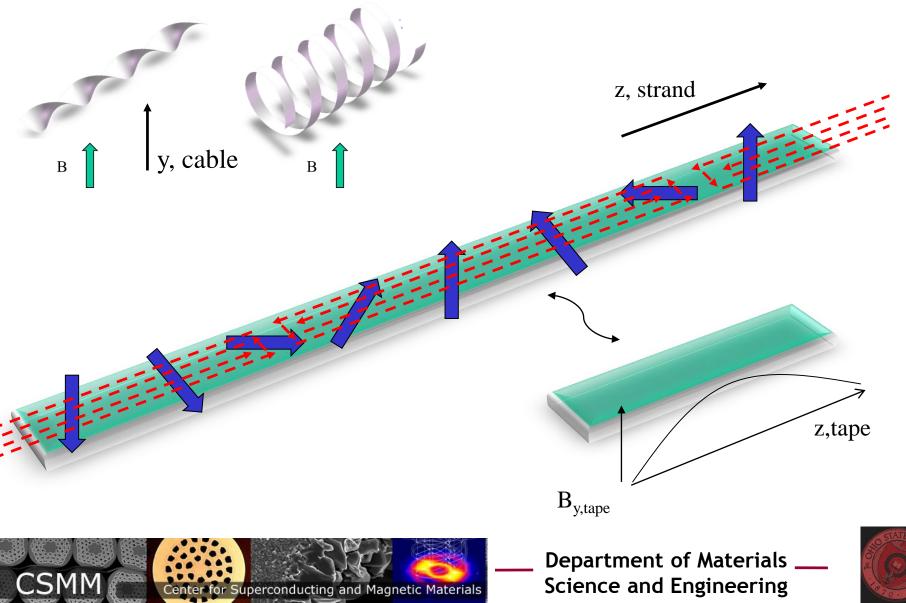
(here w is the half width)

We might then imagine that that loss could be calculated by the simple expedient of integrating the average of Eq (5) over a spatial field cycle, such that

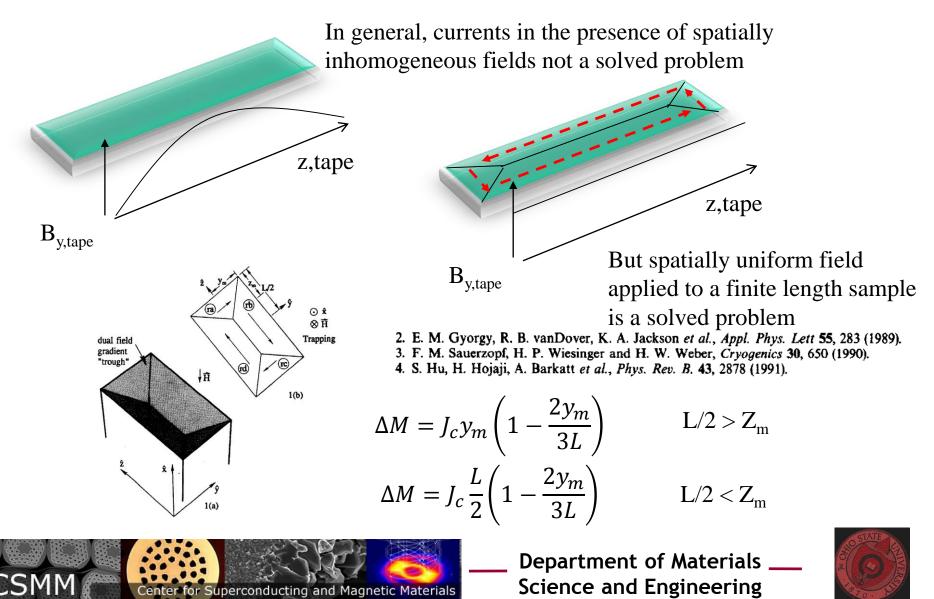
$$Q = \frac{2\mu_0 J_c w H_0}{\frac{L_p}{2}} \int_0^{\pi} \sin\left(\frac{2\pi z}{L_p}\right) dz = \frac{2\mu_0 J_c w H_0}{\frac{L_p}{2}} \frac{L_p}{2\pi} (2) = \left(\frac{2}{\pi}\right) 2\mu_0 J_c w H_0 = \left(\frac{2}{\pi}\right) Q_0$$

Where Q_0 is the loss for a slab or strip where the field is a field that is time varying and spatially uniform of maximum amplitude H_0 . For $L_p >> w$,

B


or Superconducting and Magnetic Materials

Carr, AC Loss and Macroscopic Theory of SC, p 189, 2nd Ed


B

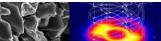
Magnetization of a helical Tape or CORC cable in Saturation II

Magnetization of a helical Tape or CORC cable in Saturation III

Magnetization of a helical Tape or CORC cable in Saturation IV

If we consider the field penetration layer by layer in a concentric shell configuration

B_{y,tape}


We get the same current paths as the short sample in uniform field

```
If B >> B_p,
in this case, B (at L_p/2-w/2) > J_c w/2
```

z,tape

But, much more relevant for transforming back to the external field coordinates, the moment is the same as that of the finite sample in homogenous field (the demag leads to a lower local M) The local magnetization is changed, since $M = \langle B \rangle / \mu 0 - \langle H \rangle$ and $\langle H \rangle$ is lower (*M* is reduced)

er for Superconducting and Magnetic Materials

Magnetization of a helical Tape or CORC cable in Saturation V

We can then use the moment of the short finite length calculation, breaking the twist or helix into a series of short samples

Integrating around the helix and accounting in this case $_{\rm B}$ for the component of the moment along the z-axis, for a twisted tape we get

$$\Delta M = \Delta M_0 \frac{2}{\pi} \left(1 - \frac{2y_m}{3L} \right) = \Delta M_0 \frac{2}{\pi} \left(1 - \frac{w}{3\frac{L_p}{2}} \right) = \Delta M_0 \frac{2}{\pi} \left(1 - \frac{2w}{3L_p} \right)$$

For the helix it will be the same, but with L_{eff} in place of L_p

$$L_{peff} = \sqrt{L_h^2 + \left(\pi D_h\right)^2}$$

Twisted Tape: If $L_p > 20/3$ w (2.7 cm for 4 mm wide tape), $\Delta M_{twisted} \approx (2/\pi)\Delta M_{tape}$ with err < 10% **Helical/CORC Tape:** Example 1: CORC Cable with $L_h = 34$ mm, OD = 4.76 mm, and $L_{peff} = 37$ mm gives $\Delta M_{helical} \approx 0.85(2/\pi)\Delta M_{tape}$ Example 2: CORC wire with $L_h \approx 10$ mm, OD = 3 mm, $L_{peff} = 13.7$ mm, $\Delta M_{helical} \approx 0.80(2/\pi)\Delta M_{tape}$

nter for Superconducting and Magnetic Materials

So, let's try some numbers for Tape

Conductor spec

t	2 microns	0.000002	m	
w	4 mm	0.004	m	
Jc		2.5E+11	A/m2	
lc		2000	А	4 K, 200 A 77 K

If the sample was very thick --

 $B_p = \mu_0 J_c a \approx 1000 \ T (4 \ K) \ or \ 100 \ T \ 77 \ K$

But for real YBCO which is quite thin ...

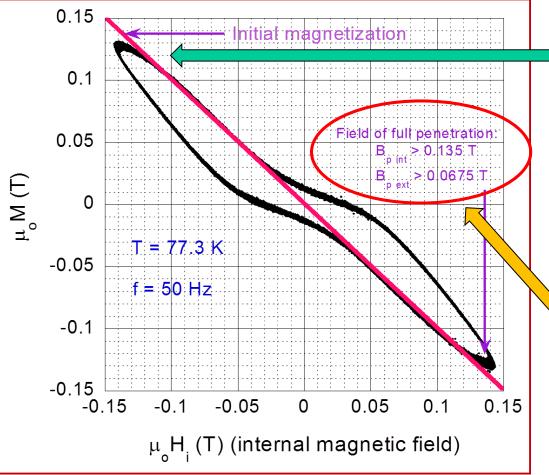
$$H_p \approx 0.4 J_c t \left[\operatorname{Ln}\left(\frac{d}{t}\right) + 1 \right]$$

For flat strands with B \perp tape, $B >> B_p$ $M = (a/2)J_c =$

	Film norm	Film norm	tape norm
	A/m	kA/m	kA/m
del M=	50000000	500000	10000

12.	56 Tesla	4 K	
1.2	56 Tesla	77 K	

4 K, 1000 kA/m 77 K

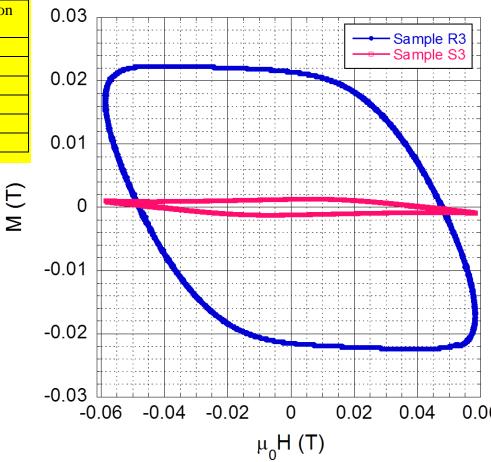


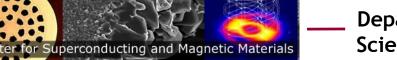
Measured Loss in Striated and Twisted YBCC University of Houston tape samples Un-Striated

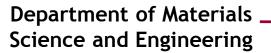
Magnetization Measurements on CORC at 77 K

Center for Superconducting and Magnetic Materials

- Saturation magnetization reduced as compared to tape
- This is due to normalizing to volume of cable rather than tape (factor of 3.3), and Jc difference (factor 3) = 10
- But note the error field in dipoles is due to moment, not magnetization
- Apparent Bp the same as tape
- But local Bp doubled
- local fields complicated

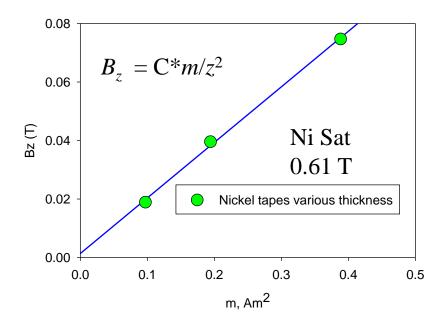

Striated measurement results of CORC at 77 K

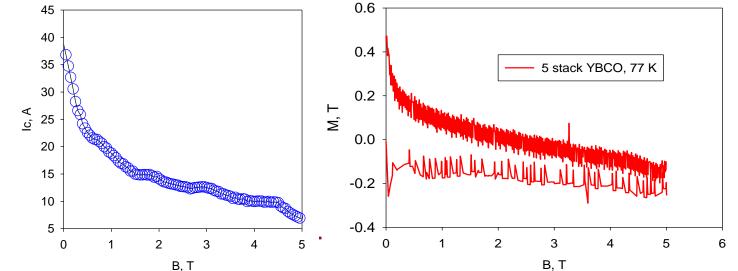

Sample	# of tapes	$I_{c}(A)$	ID	OD	Length	Striation
			(mm)	(mm)	(cm)	
R 1	$2 \ge 3 = 6$	607.9	4.96	6.17	11.7	None
S 1	$2 \ge 3 = 6$	348.5	4.95	6.07	12.2	5
R2	$3 \times 3 = 9$	904.2	4.93	6.37	11.7	none
S 2	$3 \times 3 = 9$	534.9	4.94	6.38	11.8	5
R 3	4 x 3 = 12	1227.5	5.02	6.85	11.7	none
S 3	4 x 3 = 12	749.4	4.97	6.78	11.9	5

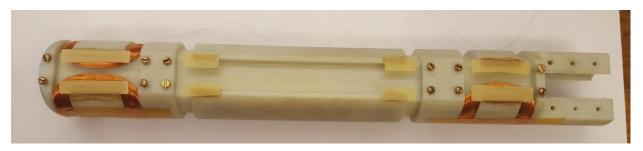

Striations do significantly reduce loss

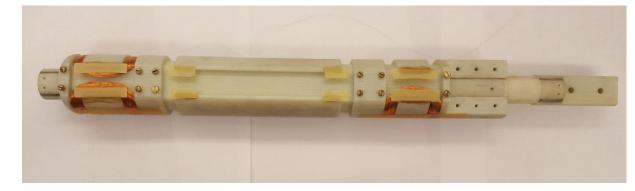
Some factor from striation, some from I_c loss

CSMM




Hall Probe Magnetization in dry magnet with tail dewar - for tapes, short cables


Made for magnetization of tapes and short cables

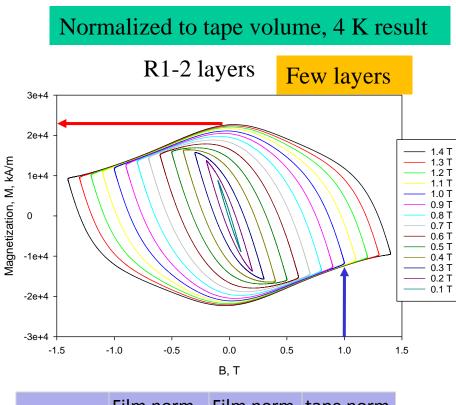

- Sample up to 6 cm long
- Current + field
- Drift, Drift + Current

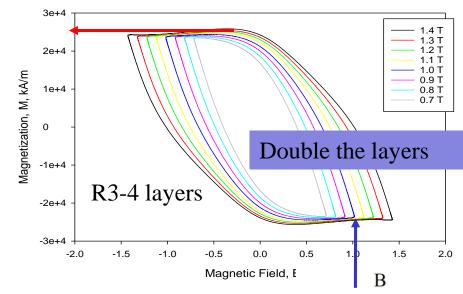
3 T Magnet Dipole Magnet

Max Field = 3.1 T Max I = 90 A L = 1 H Max Ramp Rate = 70 mT/s

CSMM

OSU- UoT Studies

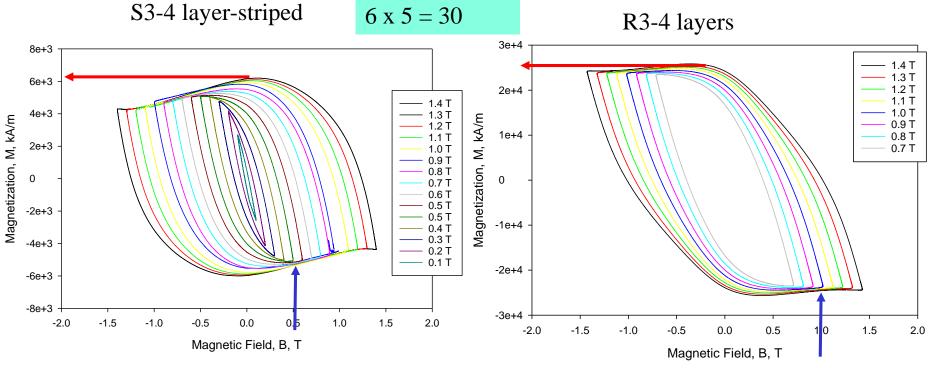

- While new OSU machine is being installed, made measurements at UoT
- Measured TWST, CORC, and Roebel cables at 4 K
- AC loss (10-60 mHz, 0.4 T), M-H (0-1.4 T, 10 mHz)
- Extracting: hysteretic, coupling, Magnetization at injection, and field penetration



CORC M-H: Effect of layer number

	Film norm	Film norm	tape norm
	A/m	kA/m	kA/m
del M=	50000000	500000	10000

Sample	Tapes	$I_{c}(A)$	ID	OD	Length	Striations
			(mm)	(mm)	(cm)	
R1	$2 \ge 3 = 6$	608	4.96	6.17	11.7	none
S 1	$2 \ge 3 = 6$	349	4.95	6.07	12.2	5
R2	3 x 3 = 9	904	4.93	6.37	11.7	none
S2	3 x 3 = 9	535	4.94	6.38	11.8	5
R3	4 x 3 = 12	1228	5.02	6.85	11.7	none
S 3	4 x 3 = 12	750	4.97	6.78	11.9	5


This is close to what we might expect for simple tape, but that is maybe fortuitous, as field lines are complicated

 $M_{max} \approx 2M_{tape}$ when tape volume normalized, not influenced by layer # B_p similar to tape and not influenced by tape #

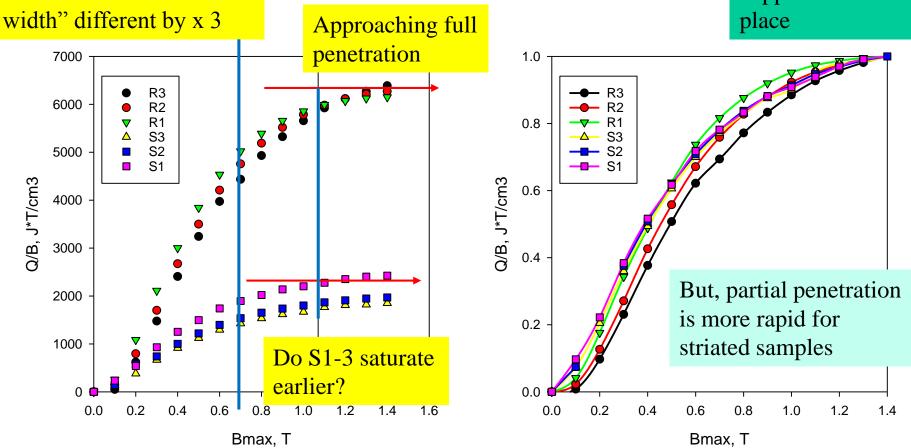
CORC M-H Effect of striation

Sample	Tapes	$I_{c}(A)$	ID	OD	Length	Striations
			(mm)	(mm)	(cm)	
R1	$2 \ge 3 = 6$	608	4.96	6.17	11.7	none
S 1	$2 \ge 3 = 6$	349	4.95	6.07	12.2	5
R2	3 x 3 = 9	904	4.93	6.37	11.7	none
S2	3 x 3 = 9	535	4.94	6.38	11.8	5
R3	4 x 3 = 12	1228	5.02	6.85	11.7	none
S 3	4 x 3 = 12	750	4.97	6.78	11.9	5

Normalized to tape volume, 4 K result

- Striping by 5 reduces M_{max} by 4
- B_p appears to be reduced by 1/2

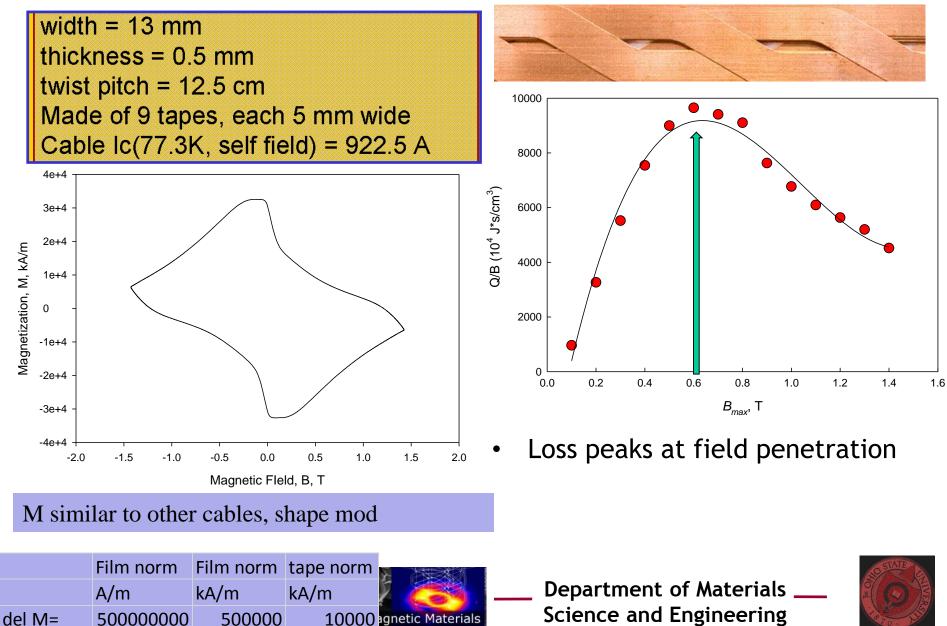
CSMM


Let's further explore this: Loss (Q) below B_p goes as B^3 , above as B

Field Penetration into cables - CORC Cables

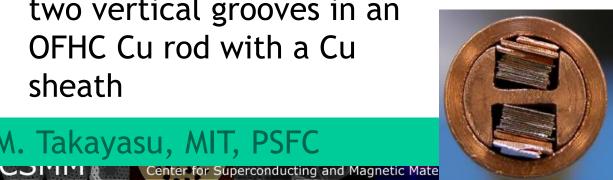
Full penetration happens at same place

So, true B_p not really changed by striation, but apparent value is



Roebel M-H

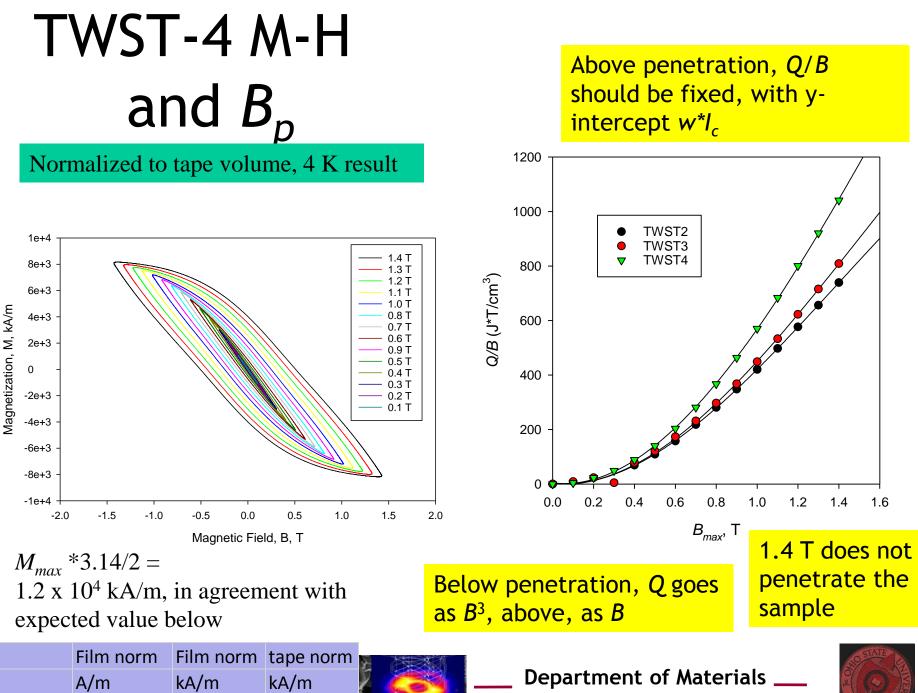
Normalized to tape volume, 4 K result


M-H, TSTC

- 4 mm wide SuNAM Tape 150 μ m SS $I_c = 200 \text{ A}, 77 \text{ K}, \text{ SF}$ Conductor Length = 200 mm, Twist Pitch = 200 mm
- TSTC-1:stacked tapes twisted between Cu strips, with retaining Cu and in plexiglass Tube

- TSTC-2: Tapes stacked Horizontally in a single helical groove in an OFHC Cu rod with sheath (05 " OD)
- TSTC-3: Tapes stacked vertically in a single helical groove in OFHC Cu with sheath
- TSTC-4: Tapes stacked in two vertical grooves in an OFHC Cu rod with a Cu sheath

M. Takayasu, MIT, PSFC



No soldering, packing only

ent of Materials and Engineering

50000000 del M=

10000 ignetic Materials 500000

Science and Engineering

Results

- $M \approx x \ 2M_{tape}$ for CORC experimentally (more than simple helical tape!)
- *M* similar to tape but shape mod Roebel
- $M \approx M_{tape}$ (maybe 2/3.14 M_{tape}) for TWST
- $M_{max} \approx 10000$ -20000 kA/m for B_{\perp} tape, Roebel cable, and any orientation CORC and TWST
- B_p similar to individual tape for CORC, Roebel, and TWST
- Striping tapes in CORC reduces M and B_{p-app}

Discussion

- CORC cable's initial slope suggest flux exclusion from whole cable at low fields → an initial magnetization slope which is 3 x higher (this may be injection region)
- Striation of the CORC cables removes this effect, and flux exclusion volume drops below full cable volume between B_{p-app} and B_{p-true}
- Flux exclusion for TWST and Roebel are like cable volume rather than tape, but here tape and cable volume similar

Cable	1 T Minj, kA/m
CORC	-12,000
CORC striated	-5000
Roebel	-20000
TWST	-8000

Strand type	NbTi ⁽¹⁾	Nb ₃ Sn ⁽²⁾	Bi:2212 ⁽³⁾	YBCO	YBCO
Cable type	Rutherford	Rutherford	Rutherford	TSTC	CORCTM
Cable packing factor, λ_c	0.88	0.855	0.87 ⁽⁴⁾	0.56	0.58
Strand filling factor, λ_s	0.385	0.455	0.26	0.01 ⁽⁵⁾	0.01 ⁽⁵⁾
Layer CCD, $J_{c,inj}$, kA/mm ²	20.4	-	1.75	88 ⁽⁶⁾	88(6)
Eng. $\text{CCD}^{(1)}$, $J_{e,inj}$, kA/mm ²	7.85	-	0.455	0.88	0.88
Fil. (strand) size, deff; µm	7	61	278	4000 ⁽⁸⁾	4000 ⁽¹⁰⁾
$J_{cable,inj}$ kA/mm ²	6.91	13.0	0.396	0.493	0.510
$J_{cable, coll}$ kA/mm ²	0.704	0.855	0.348	0.244	0.232
B _{b,coll} , T	8	15	20	20	20
b_3 , units ⁽¹¹⁾	3	41	19	330 ⁽¹²⁾	330(12)
b_{3^*} , units ⁽¹³⁾			37	99	99

77 K Ic	4 K Ic	Jc (A/m2)	М	
200	2000	2.5 x 10^11	10000	
80	800	10^11	4000	
70	700	0.88 x 10^11	3250	
		· · · · ·		₩¥

Superconducting and Magnetic Materials

- So, for the tape, while the *M* goes up, it goes up as *I_c*, so less cables, and field errors are same
- But, cable vs tape differences matter all within factor of two

Next Steps

- Further Measurements of the most recent cables, expanded up to +- 3 T at 4 K
- LBNL-OSU collaboration (X. Wang) with YBCO data detailed field error estimations canted cos and other magnets
- Explore M modification with current injection
- Consider more closely effects of creep on error fields
- Loss is of interest?

Magnetization - but loss?

- For the LHC NbTi dipoles ramping at about 7 mT/s AC loss is only a small contributor to cryogenic load
- Could be larger for YBCO cables.
- For a YBCO cable carrying a current of 10 kA at 20 T the loss at 7 mT/s is estimated to be 200 mW/m
- For an HTS insert of, say, 70 turns the winding dissipation would be 14 W/m -- more than double the LHC ring's 4.5 K/1.8 K refrigeration capacity
- This is a handle-able problem, but not of no interest

10 kA cable		Measured CORC cable	
T/s	t, sec		f
0.007	2285.7143	9142.857	0.000109
Q, J/m3	A m2	Q/m	mW/m
1000000	0.0000785	785	0.085859

So, 1/3 of simple estimate, but still substantial

