

Role of electrostatic charges in the calculation and measurement of AC losses in superconducting coils

F. Gömöry¹, M. Vojenčiak ¹, M. Solovyov ¹, J. Sheng^{1,2}

¹Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia ²Institute of Electrical Engineering. Shanghai Jiao Tong University, Shanghai, China

Outline

- 1) Two ways of AC loss determination
- 2) Computation of coil voltage theory
- 3) Computation of coil voltage virtual experiments and verification by real experiments
- 4) Conclusions

Two ways of AC loss computation in a SC coil

macroscopic point of view:

$$P_{ps}(t) = I_{ps}(t)U_{ps}(t) \cong$$

$$P_{coil}(t) = I_{coil}(t)U_{coil}(t)$$

$$Q_{coil} = \int_{0}^{T} I_{coil}(t) U_{coil}(t) dt$$

microscopic point of view

$$P_L(r, z, \theta) = j(r, z, \theta)E(r, z, \theta)$$

$$Q_{coil} = \int_{0}^{T} I_{coil}(t)U_{coil}(t)dt = Q_{L} = \int_{0}^{T} dt \int_{V} j(r, z, \theta)E(r, z, \theta)dV$$

Expression for the local electric field

implementation of Maxwell equations (at low frequency limit)

Electric field (force acting on electric charges $\vec{F}=q\vec{E}$)

$$\vec{E}(r) = -\frac{\partial \vec{A}(r)}{\partial t} - \nabla \varphi$$

Changing magnetic field ("induced emf")

Electrostatic potential created by electric charges

Evaluation of voltage measured on a coil turn

turn i: $L_i \cong 2\pi R_i$

$$U_{E} = \int_{L_{i}} \vec{E} \cdot d\vec{l}$$

$$U_{A} = -\int_{L_{i}} \frac{\partial \vec{A}}{\partial t} \cdot d\vec{l}$$

$$U_{\varphi} = -\int_{L_i} \nabla \varphi \cdot d\vec{l}$$

Example 1: voltage induced in an open turn

$$\int_{a}^{b} \vec{E} \cdot d\vec{l} = \int_{a}^{b} \left(-\frac{\partial \vec{A}}{\partial t} - \nabla \varphi \right) \cdot d\vec{l}$$

$$\cong \int_{S} -\nabla \times \frac{\partial \vec{A}}{\partial t} \cdot d\vec{S} + \int_{a}^{b} -\nabla \varphi \cdot d\vec{l}$$

$$\int_{a}^{b} \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi}{\partial t} + \varphi(a) - \varphi(b)$$

voltage measured by the voltmeter $U = \varphi(a) - \varphi(b)$

there is no current flowing in the turn, therefore $\vec{E} = 0$

as result
$$\varphi(a) - \varphi(b) = \frac{\partial \Phi}{\partial t}$$

sign of the measured voltage is opposite to the induced emf

Example 1: voltage induced in an open turn

experimental verification:

SC magnet ϕ 200 mm bore at ambient temperature, with known field polarity and pick-up coil (Cu wire) with 450 turns (known sense of winding)

Example 2: metallic turn closed by resistance R_1

$$\vec{E}_1 = I\vec{i} \frac{R_1}{l_1}; \quad \vec{E}_2 = I\vec{i} \frac{R_2}{l_2}$$

$$\nabla \varphi_1 = -\frac{\partial \vec{A}}{\partial t} - I\vec{i} \frac{R_1}{l_1}; \quad \nabla \varphi_2 = -\frac{\partial \vec{A}}{\partial t} - I\vec{i} \frac{R_2}{l_2}$$

$$\varphi_{a} - \varphi_{b} = \int_{b}^{a} \nabla \varphi \cdot d\vec{l} = \nabla \varphi_{1,i} l_{1} = -\frac{\partial A_{i}}{\partial t} l_{1} - I \frac{R_{1}}{l_{1}}$$

$$\varphi_{a} - \varphi_{b} = \int_{b}^{a} \nabla \varphi \cdot d\vec{l} = -\nabla \varphi_{2,i} l_{2} = \frac{\partial A_{i}}{\partial t} l_{2} + I \frac{R_{2}}{l_{2}}$$

$$-I(R_{1} + R_{2}) = \frac{\partial \Phi}{\partial t}$$

$$-I(R_1 + R_2) = \frac{\partial \Phi}{\partial t}$$

$$U = \varphi_a - \varphi_b = \frac{\partial \Phi}{\partial t} \left[\frac{l_2}{l_1 + l_2} - \frac{R_2}{R_1 + R_2} \right]$$

Example 3: contactless measurement of electric field

closed (inner) metallic turn:

$$\int_{L_2} \vec{E}_2 \cdot d\vec{l} = R_2 I_2$$

$$\int_{L_2} \vec{E}_2 \cdot d\vec{l} = \int_{L_2} \left(-\frac{\partial \vec{A}}{\partial t} - \nabla \varphi \right) \cdot d\vec{l} = -\frac{\partial \Phi}{\partial t}$$

$$I_2 = -\frac{1}{R_2} \frac{\partial \Phi}{\partial t}$$

integral is 0 in closed loop

open (outer) turn with no current:

$$U = \varphi_a - \varphi_b = \frac{\partial \Phi}{\partial t} = -R_2 I_2$$

Example 4: Resistance-less ring energizing a conducting ring

energizing current in the outer ring: $I_1(t) = \alpha t$

steady state: $I_2 = \beta$

magnetic flux produced by both the currents:

$$\Phi = M_1 I_1 + M_2 I_2 \cong M(I_1 + I_2)$$

energizing ring:
$$\varphi_a - \varphi_b = M\alpha$$

energizing ring:
$$\varphi_a - \varphi_b = M\alpha$$
 inner ring: $I_2 = -\frac{1}{R_2} \frac{\partial \Phi}{\partial t} = -\frac{\varphi_a - \varphi_b}{R_2} = -\alpha \frac{M}{R_2}$

furnished power:
$$P(t) = UI_1(t) = (\varphi_a - \varphi_b)\alpha t = M\alpha^2 t$$

energy stored:

$$E_m(t) = \frac{M}{2} (I_1(t) + I_2)^2$$

$$\frac{\mathrm{d}E_m(t)}{\mathrm{d}t} = M(I_1(t) + I_2)\frac{\mathrm{d}I_1}{\mathrm{d}t} = M(\alpha t + \beta)\alpha = M\alpha^2 t + M\alpha\beta$$

$$P(t) = UI_1(t) = \frac{dE_m(t)}{dt} - (\varphi_a - \varphi_b)I_2 = \frac{dE_m(t)}{dt} + R_2I_2^2$$

Back to a superconducting coil

$$P(t) = U(t)I(t) = \frac{dE_m(t)}{dt} + P_{loss}(t)$$

$$U = \varphi_a - \varphi_b$$

numerical modeling: $\varphi_a - \varphi_b = \int_b^a \nabla \varphi . d\vec{l}$

A- φ method: $\nabla \varphi$ is directly computed

H- formulation: $\nabla \varphi = -E(t,r) - \frac{\partial A(t,r)}{\partial t}$

Experimental verification – 10 turn pancake coil from CC tape

$$f = 36 \text{ Hz}$$

I_a [A]	Q [mJ] $-A$ -FEM	Q [mJ] – H -FEM
80	1.87	1.82
130	9.06	9.10

 $j_c = const.$

comparison of calculated voltage waveforms: apparently only inductive signal

Experimental verification – 10 turn pancake coil from CC tape

after compensation of inductive signal:

$$U_{coil,comp}(t) = U(t) + k_c \sin 2\pi f t$$

Conclusions

- ➤ The voltage necessary for AC loss evaluation in a superconducting coil is controlled by electrostatic charges on its terminations
- In experiment, this is directly what a standard voltmeter measures
- In numerical modeling, determination of electrostatic potential depends on the formulation:

in A- φ formulation, $\nabla \varphi$ is calculated as an independent variable in H-formulation, macroscopic voltage should be derived

Voltage on coil is a measurable quantity – allows detailed comparison of numerical model with experiments