Twin aperture bending magnets and quadrupoles for FCC-ee

Attilio Milanese, Marek Bohdanowicz

FCC-ee (Future Circular Collider) is a study for a large lepton collider, hosted around CERN

mode	cm collision energy [GeV]		
Z	91		
W	160		
H (ZH)	240		
ttbar	350		

dc operation
with top-up injection

double collider counter-rotating e⁺ / e⁻ beams

courtesy of Michael Benedikt

The FCC-ee magnet system involves thousands of resistive (low field) dipoles and quadrupoles

bending magnets

2900 per ring × magnetic length 23.94 / 21.94 m = 67.1 km B field 14.1 mT to 54.3 mT (dc)

quadrupoles

1450 units (per ring) × magnetic length 3.1 m = 9.0 km

main (twin) dipoles

These are the main requirements for the FCC-ee dipoles

aperture: compatible with vacuum chamber with winglets

field: 14.1 mT (45.6 GeV) to 54.3 mT (175 GeV)

good field region: ≈10⁻⁴ in ±10 mm horizontally (without counting a systematic quadrupole term)

As a reference, we recall the LEP dipoles, with their steel

field: 22 mT (20 GeV injection) to 108 mT (100 GeV), not do

The LEP dipoles had 5.75 m long cores and four water cooled aluminium excitation bars, carrying 4.5 kA each

This is the flux density (for the max field of FCC-ee) if we were to use the LEP dipoles, exploiting the 30% dilution of the iron

For FCC-ee we propose a twin dipole (I layout), with two aluminium excitation bars: simple, compact and energy saving

These are the cross-sections of the LEP and FCC-ee main dipoles, to scale (54 mT in the bore)

LEP (built) FCC-ee (prototype)

We are manufacturing a 1 m long prototype, with cylinders as spacers, to further increasing the flux density in the return leg

This was assembled at CERN last week, with copper busbars (instead of aluminium) for the prototype

picture by Mike Struik

main (twin) quadrupoles

To exploit a magnetically coupled twin layout, we use an FD polarity in the two apertures

aperture and intra-beam distance: as for bending magnets field gradient: max 9.9 T/m, for 90°/90° FODO at 175 GeV good field region: $\approx 10^{-4}$ at 10 mm radius

Conventional twin quadrupoles exist, for example the MQW of the LHC – aperture and intrabeam distance would fit

We propose a (coupled) twin quadrupole, saving 50% power (at equal A/mm²) with respect to a traditional design; moreover, the coils are far from the midplane radiation

We are manufacturing a 1 m long prototype, with a central non-magnetic spacer to position the two halves

conclusions

Conclusions

- 1. The main magnets for FCC-ee can run with reasonable power consumption (16 MW for main dipoles, 25 MW for main quadrupoles) if innovative designs are used
- The proposed cross-sections aim at compactness and simplicity, as
 67 km of (main) dipoles and 9 km of (main) quadrupoles are needed
- 3. 1 m long prototypes are being designed, to prove experimentally the twin configuration
 - low field and unusual aspect ratio (for the dipole)
 - unconventional asymmetries (for the quadrupole)

4. These are proofs of concept and starting points for further optimizations, which will be needed in the future for a series production of thousands of units in the industry

thank you 00000000 00000000

30 Aug. 2017

free field in one aperture

For the twin dipole, the pole width is compatible with the target field quality, according to simulations

energy	[GeV]	45	175
B_1	[mT]	14.1	54.3
b ₂	[10-4]	-3.3	-2.6
b_3	[10-4]	0.2	0.1
b_4	[10-4]	-0.2	-0.2
b ₅	[10-4]	-0.1	-0.1
b ₆	[10-4]	-0.0	-0.0

allowed multipoles at 10 mm radius

For the twin quadrupole, the left / right asymmetry and the open midplane make the field quality tricky: the prototype can then guide further simulations

