Design of a Dipole with Longitudinally Variable Field using Permanent Magnets for CLIC DRs

M. A. Domínguez, F. Toral (CIEMAT), H. Ghasem, P. S. Papadopoulou, Y. Papaphilippou (CERN)

Index

- 1. Introduction
- 2. Technical specifications
- 3. Preliminary design
- 4. 2D Magnetic Design
- 5. 3D Magnetic Design
- 6. Field trimming
- 7. Conclusions

Introduction

- CLIC: electron positron linear accelerator collider. Particle physics research in the multi-TeV energy scale
- Two beams of 3 TeV. Expected luminosity of 2×10⁺³⁴. Inversely proportional to the transverse beam emittance
- Damping rings (DRs) to reduce the emittance of the injector chain incoming beams. Lattice: theoretical minimum emittance (TME) cell and simple FODO lattice filled with high field superconducting damping wigglers
- □ The horizontal emittance is further reduced below the TME limit for a given magnetic structure by considering dipole magnets with longitudinal variable bending field. Trapezium field profile dipoles are preferred in the CLIC DR lattice

Technical specifications

TABLE I TECHNICAL SPECIFICATIONS

Good field region radius [mm]	5	
Field harmonics [units 1E-4]	~1	
Integrated dipole field [T·m]	0.667	
Transverse gradient [T/m]	11	
Magnet length [m]	0.58	

	Stan profile	Trapezium profile				
	step prome	Case 1	Case 2	Case 3		
# of dipoles	96	90	90	90		
Bmax [T]	1.7666	1.7666	1.7666	1.7666		
Bmin [T]	0.8737	0.7791	0.7508	0.7146		
L1 [mm]	65.858	3.352	13.836	26.488		
L2 [mm]	224.142	286.648	276.164	263.512		
8[1]	L ₁ Bmax	B[T]	L ₁	Bmin L ₂		
	0.58m		0.58m			

Preliminary design

- C-shaped magnets: efficient use of space
- Gap is pointing outwards to ease synchrotron radiation evacuation
- □ Yoke made of pure iron (Armco). Average field below 1T
- High saturation in the high field region pole => Fe-Co (Vacoflux) preferred
- Straight magnet: higher quality machining, eases assembly
- Sagitta: 5mm. GFR centered with the pole and 2 additional regions with the same radius and displaced ± 2.5mm
- □ Fixed field provided with **permanent magnets**
- □ Max Temp variation ±0.1°C => **No specific temperature** compensation
- □ Taking into account radiation tolerance, volume and weight, maximum remanent magnetization, cost,...:
 - SmCo in the low field region
 - NdFeB in the high field region

Magnetic design: 2D

- Poles cross section is smaller in the tip than in the base: flux concentration, higher field peak in the gap
- Combined function magnet (dipolar and quadrupolar fields): hyperbolic profile in the pole tips
- 2D simulations in Quickfield
- Low field region: SmCo blocks in a flat configuration over the pole

High field region: NdFeB in three blocks working in parallel to preserve the pole dimensions within reasonable limits. Highly saturated: much more difficult to reach the desired specifications

Magnetic design: 3D

- Short magnet length (0.58 m) makes 2D simulations diverge from 3D, particularly in the high field section, where the pole tip is approximately 7 mm wide
- Result comparison/validation: Ansys Maxwell, ROXIE, COMSOL and Opera
- Crosstalk between high and low field regions. To minimize it, the low field region pole tip has been extruded and the high field region pole tip chamfered
- □ Step profile: easily obtained
- Trapezium profile: tough challenges. Achieved introducing a variable gap along Z axis

Magnetic design: 3D

□ High field region: **flat profile** due to the high iron saturation

- Low field region gap: not constant. Different hyperbolas for each different gap height
- By contrast, to be mechanized with EDM, the pole tips must be ruled surfaces
- On account on these restraints: "averaged hyperbola". Very good results in the simulations

Upgrade to 2.3 T

- Magnet originally limited to 1.77 T peak field as a reasonable value for a non-superconducting magnet
- 3D simulations: peak could be increased above 2 T, increasing emittance reduction factor while keeping the field quality
- □ A new 2.3 T optimized trapezium profile is finally proposed

Upgrade to 2.3 T

- At this point the magnet **is close to meet** the desired specifications.
- The obtained decay -"Old profile"- at both sides of the peak does not match the ideal one (hyperbolic)
- Impossible to get closer to the ideal decay -"Optimized 2.3 T profile": a new layout is introduced
- To follow the ideal hyperbolic decay, the low field region is split in two parts: low and mid field region

Upgrade to 2.3 T

- □ Three differentiated sections: low, mid and high field. This allows a higher F_{TME} 7, higher than the one originally proposed
- New hyperbolic profiles in the low and medium field regions, while the high field one maintains the flat pole tip
- Same configuration for the high and medium field regions PM: three NdFeB blocks working in parallel
- Low field region maintains the SmCO in one flat block over the pole
- □ With this upgrade the **maximum field** is increased up to 2.3 T and at the same time the field decay matches more precisely the ideal hyperbolic desired profile. Multipole values within the limits.

TABLE II NORMALIZED MULTIPOLES										
GFR	b1	b2	b3	b4	b 5	bó	b7	b8	b9	b10
-2.5	10000	-465.65	-4.73	0.85	1.55	-0.36	-1.5	0.47	1.27	-0.18
0	10000	-479.18	-1.98	1.57	-0.26	-0.03	0.06	0.04	-0.02	0.01
+2.5	10000	-492.62	0.39	-0.02	-2.24	-0.34	1.63	0.45	-1.35	0.00

Field trimming

Two main possibilities to study the feasibility of varying the magnetic field ±5%:

Active: adding coils and their corresponding power supply

- Pros:
- Fast field trimming
- Can be adjusted during More complex design operation
- · Cons:
- Higher cost

 \succ Passive: splitting the yoke in two parts and therefore making it possible to adjust the magnetic circuit reluctance

- Pros:
- Less expensive
- Simpler design

- · Cons:
- In principle the field cannot be adjusted during operation

Field trimming

Simulations

Active: due to the high iron saturation, the coils should be too large and water cooled. This approach gets away from the main ideas behind using permanent magnets: compactness and no need of power supply

Passive: feasible according to simulations. This is the preferred solution and it will be probably implemented with actuators to allow remote trimming.

Conclusions

- PM based design. High requested peak field implies dealing with iron saturation. Partially overcome using Fe-Co and suppressing the hyperbolic profile in the most saturated section.
- Important challenge: longitudinal gradient with trapezoidal decay. Solved splitting the magnet in three differentiated field regions combined with an innovative variable gap solution
- □ The mentioned solutions finally lead to a validated proposal that **meets and even exceeds** in terms of beam emittance reduction- the specifications. This achievement is due to the trapezoidal field profile, which has been implemented **for first time in an accelerator mag**net
- □ The probable need of a **field trim** is also evaluated and implemented creating a **variable reluctance return path** for the magnetic flux using movable parts

Thank you for your attention!

Multipoles

Multipoles

