

Plasma-Surface Interaction in fusion

Understanding PSI is important:

- Erosion: lifetime and performance
- Retention: safety limits and fueling

No easy access in existing tokamaks

Need for linear machines

Linear machines at DIFFER

- Recreate the fusion reactor environment
- Characterize and control plasma parameters
- Spacious enough to fit relevant size targets
- Good access (diagnostics + target exchange

Similar PSI conditions

- High density $\sim 10^{20} 10^{21} \text{ m}^{-3}$
- High flux $\sim 10^{24}$ particles m⁻²s⁻¹
- High fluence (integrated flux)
- Plasma T ~1 5 eV
- High power load ~10 MW m⁻²

Magnum-PSI design

25th International Conference on Magnet Technology

August 30, 2017

2.5 T superconducting magnet

Standalone superconducting magnet system in liquid He

Recondensing cooling method

5 solenoids wound on one coil former

Total stored energy: 16.3 MJ

Passive stray field shielding

16 radial access ports

Induction: 492 H

Weight: 15 tons

Innards of Magnum-PSI magnet

- a) Coils
- b) Helium vessel
- c) Radiation shield
- d) Vacuum vessel
- e) Turret with cryocoolers
- f) Shield cryocooler

Protection circuit

- Passive protection with cold diodes
- Each diode is connected to 793 gram Cu heat sink
- Each coil equipped with quench heaters
- Slow dump resistor for power failure
- Fast dump resistor to quickly remove current from circuit

HTS current leads

- HTS section: 12 ReBCO tapes on a stainless-steel tube
- LTS section: 2 NbTi/Cu LHC type 2 cables
- Heat flow to top copper joint: 14 W w/o current and 26 W with current
- Heat flow to 4K: 180 mW

Contribution from ATLAS magnet group at CERN

Cryogenics

- Designed as zero boil off system
- 2 Sumitomo RDK-415D two stage cryocoolers (3 W @ 4 K)
- 1 Leybold 250 MD one stage cryocooler on radiation shield
- Excess power used to re-condense evaporated helium
- Calculated average shield temperature: 60 K

	Heat load on shield at 60 K [W]	Heat load on 4 K level with shield at 60 K [W]
Radiation	88	1.11
Conduction	20	0.76
Current leads	26	0.18
Total	134	2.05

Superconducting coils and diode blocks

25th International Conference on Magnet Technology

August 30, 2017

Helium vessel

25th International Conference on Magnet Technology

August 30, 2017

Radiation shield

25th International Conference on Magnet Technology

August 30, 2017

Vacuum vessel

25th International Conference on Magnet Technology

August 30, 2017

Factory acceptance tests

- FAT in 2010: erratic quench behavior due to incomplete clamping and insufficient stabilization of wires
- FAT in 2011: damage to wiring plate and outer layer of coils by two electrical arcs due to weak points in the local insulation on one of the bus bars
- FAT in 2016 after rewind of coils and new wiring board:
 - No zero boil off due to too high average radiation shield temperature: 80 K instead of 60 K
 - Magnetic field profile well within specifications

Cryogenic situation

- Average radiation shield temperature: 80 K (I/O 60 K)
- Probable cause: bad connection between radiation shield and cryocooler
- Installation of Cryomech
 HeRL45 reliquefier on top of
 magnet was chosen as most
 robust and low risk solution
- Zero boil off: pressure in helium vessel controlled by heater (~2 W excess power)

25th International Conference on Magnet Technology

August 30, 2017

Operational space Magnum-PSI

Maximum plasma fluxes thus far achieved **41.6 MW m⁻²** and **1.4x10²⁵ particles m⁻² s⁻¹**

Long fluence investigations now possible

High fluxes and steady-state performance are now achievable for the first time within a reasonable timeframe

Accumulated divertor fluence for different tokamaks [1] over 5000 discharges

Time needed to reach a given fluence at $q=10 \text{ MW m}^{-2}$ ($T_e=1.0 \text{ eV}, n_e=10.6 \text{x} 10^{20} \text{ m}^{-3}, \Gamma=8.6 \text{x} 10^{24} \text{ m}^{-2} \text{ s}^{-1}$)

Research program at DIFFER

- Assessing urgent plasma-surface interactions issues for ITER
- Potential of liquid metals as plasma facing materials for DEMO
- Plasma processing under extreme conditions

Conclusions

- Magnum-PSI is a unique research facility for Plasma
 Surface Interaction studies under extreme conditions.
- Construction of the 2.5 T superconducting magnet has been marked with many setbacks but is finally completed.
- Installation of this steady-state magnet has expanded the operational space with high fluence experiments.
- Experimental program started beginning 2017.
- Opportunity to visit DIFFER this Friday (Technical visit 3).