

Test result of the short models MQXFS-3 and MQXFS-5 for the HL-LHC upgrade

Hugo Bajas et. Al.

25th Magnet Technology Conference, Amsterdam August the 29th 2017

Hugo Bajas,MT25, Aug. 2017

HL-LHC insertion quadrupole models MQXFS-3 and MQXFS-5

MQXFS-3

• On the High Field Magnet Insert

HL-LHC insertion zone

150-mm aperture MQXF cross-section

- MQXFS-5
 - On the Cluster D Insert

Commissionning of the HFM bench and MQXFS-3

- MQXFS-3 insertion in the High Field Magnet facility at CERN/SM18 facility
 - The final commissioning of the new bench has been completed with the powering test of S3 in Autumn 2016
 - 2.4 long and 1500 mm large magnets with a 20 kA powering capacity at 1.9 K.

Commissionning of the Cluster D bench and MQXFS-5

- MQXFS-5 on the Cluster D header, CERN/SM18 new facility
 - The final commissioning of the new bench has been completed with the powering test of **S5 in Summer 2017**
 - 5.4 long and 900 mm large magnets with a 30 kA powering capacity (2 parallel 15 kA circuit with EE) at 1.9 K.

Magnets Load-line, critical surface and Short Sample limit

MQXFS-5

PIT 192

- MQXFS-3
 - **RRP** 108/127, 132/169

Magnet integration with upgrade connections

A. Chiuchiolo, 2017

Insert λ-plate/ Magnet connecting Plate

Voltage taps Strain gauges Optical fibers (only S5)

Quench heaters

Magnets instrumentation

32 strain gauges (4-wires resistive)

- 8 on the shell (4 axial & 4 azymuthal)
- 4 per rod
- 2 per coil (1 axial & 1 azymuthal)
- 20 FBG sensors (only S5)
 - 4 on the coil pole (1 axial & 1 azymuthal)
 - 4 on the shell (1 axial & 1 azymuthal)
 - 4 thermal effect compensator
- 64 voltage taps

16 per coil (8 inner, 8 outer layer)

Performance measurements and training

MQXFS-3

CERN

2 runs performed in October and December 2016

MQXFS-5

2 runs performed in July 2016

- First quench at 91% and 92% of nominal current for S3 and S5
- Nominal current : 7 quenches for S3 and 5 for S5
- Ultimate current: not reached by S3, after 30 quenches for S5

Performance measurements and training

- Maximum current for S3 and S5
 - 83% and 88 % of Short Sample at 1.9 K
- Performance check at 4.2 K
 - 89% and 94% of Short Sample
- Good training memory after thermal cycle (slight decrease for S3)

Performance measurements and training

- MQXFS-3
- The ramp rate increase from 20 to 200 A/s
 - allows to keep training the magnet
 - Reconfirmed during run 2
- Ramp rate dependence of the quench current measured

Quench location

MQXFS-3

Coil 7 shows issues after quench 19 with systematic quenches at the coil lead end head end spacer zone.

Coil 105 limits the performance otherwise with pole turn quench moving along training

Quench location

MQXFS-5

- Coil 203 is quench in the 2nd and 3rd turns pole straight part or near the heads
- Coil 205)s quenching at its lead end heads or first block...
- Coil 206 mits the performance with pole turn straight part quench. It has also the least short sample limit

SHT

Rod D

Rod A

Flux jump measurement

Greater amplitude of the voltage spike.

- Validation of the uQPS detection card prototype under developement
- Validation of the new variable threshold card to protect the magnet
- What happens near the quench...

2017

Voltage disturbance measurement

The prototype of detection cards allows to better detect small voltage variations at 900 kHz that are smeared with classic cards.

- An increase of the activity is measured before the quench and occurs more than 500 A before (>20 s)
- The disturbance happens later and later after each training quench

- Example of two typical events,
- one 20 s before the quench, the other precursor to the quench.

Splice resistance measurement

- No issues with the Nb₃Sn/NbTi connection between coils and with current leads.
- For both magnets, all measured splice **resistances** are **below 0.3 n**Ω.

Splice name	Resistance [nΩ]	Resistance error $[n\Omega]$
EE203I1-EE203I2_cut	0.10	5.86E-03
EE206O8-EE206O7_cut	0.16	6.10E-03
EE206I2-EE206I1_cut	0.12	8.06E-03
EE205O8-EE205O7_cut	0.18	6.84E-03
EE205I2-EE205I1_cut	0.07	7.02E-03
EE204I1-EE204I2_cut	0.07	6.93E-03
EE204O7-EE204O8_cut	0.02	7.39E-03
EE203O8-EE206O8_cut	0.21	7.36E-03
EE206I1-EE205O8_cut	0.24	6.77E-03

Inductance measurement

- Non linear behavior of the inductance as function of the current
- Conductor magnetization up to 4 kA
- Iron saturation effect up to 14 kA
- Nominal value of 9.8 mH
- Agreement between S3 and S5

Magnetic measurements

- Magnetic field quality has been measured
 - L. Fiscarelli Mon -Af-Po1.01
 - S. Izquierdo Bermudez Wed-Af-Or23

View of the rotating coil array

Persistent currents effect on b₆.

Magnet protection study

- Intensive Quench Heater efficiency tests have been performed on S3
 - E. Ravaioli- Wed-Af-Or24

- The magnet has been protected using only the outer layer quench heater (no external dump, no inner layer QH)
- Quench integral: 28 MA².s
- Hot Spot Temperature: 250 K
- Magnet resistance: 164 mΩ
 - C7: 35 mΩ
 - C105: 42 mΩ
 - C106: 39 mΩ
 - C107: 48 mΩ

Mechanical measurements

Fiber Bragg Grating based sensor measuring strain in MQXFS-5

Cooldown (FBG)

IL-LHC PROJEC

Powering (FBG)

20 FBG sensor multiplexing in five channels

Validation wrt. Strain Gauges

Conclusive remarks

- Successful commissioning of two new test benches at SM18, the HFM and Cluster D.
- Two powering runs performed on the last two HL-LHC insertion quadrupole short models MQXFS-3 and 5.
- Both magnet quickly reach nominal current but only MQXFS-5 reached ultimate. Both now stand at
- A deficient coil (7) has been identify in MQXFS-3 that will be replaced for magnet re-testing.
- Due to commissioning, the test of S5 has been largely shortened. A new run is soon foreseen.
- New analysis tools allow to observe important increase of activity second before the quench.
- Regarding magnet protection study, measurements have been done on the Quench Heater and external dump resistance systems efficiency but not yet on CLIQ system.

Thank you for your attention!

